• Title/Summary/Keyword: Theoretical Rocket Performance

Search Result 29, Processing Time 0.023 seconds

A Theoretical Study on the Estimation of Distorted Thrust of Solid Rocket Motor (왜곡된 로켓 모터 추력 추정에 관한 이론적 연구)

  • 김준엽
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-84
    • /
    • 2004
  • In general, static firing test is conducted before flight in order to obtain data such as thrust. pressure, temperature and strain, which show the characteristics of rocket motors. But the measured thrust of the obtained data is especially distorted by the effects of dynamic characteristics of thrust stand so that it is difficult for us to determine the exact value of peak thrust and rising time etc., which represent the performance of rocket motor. This paper, therefore. verified the causes of distortion of measured thrust, and proposed the theoretical method to estimate the true thrust from the distorted thrust. And also the proposed method was applied to virtual thrust stand using computer simulation, and showed good result. As a result of that, the proposed method was proven to be valid and applicable to estimate distorted thrust.

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

Gain Scheduling Controller Design and Performance Evaluation for Thrust Control of Variable Thrust Solid Rocket Motor (가변 추력 고체추진기관의 추력 제어를 위한 이득 계획 제어기 설계 및 성능 분석)

  • Hong, SeokHyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.1
    • /
    • pp.28-36
    • /
    • 2016
  • Theoretical model of a variable thrust solid rocket motor with a pintle nozzle was derived. For the chamber pressure control, classical model linearization and proportional-intergral controller was used. And then two types of gain scheduling controller were suggested to imporve controller performance for the non-linear propulsion model. Considering characteristics of systems, control gains were scheduled by chamber pressure or free volume. Step responses of each controllers were compared. As a result, the proper control algorithm about characteristics of variable thrust rocket motor was suggested.

Propellant Characteristics used for a Rocket-Assisted Projectile with Aluminium Contents (알루미늄 함량에 따른 로켓보조추진탄용 추진제 특성)

  • Jeong, Jae-Yun;Choi, Sung-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.60-66
    • /
    • 2019
  • In this report, the process characteristic(viscosity), mechanical properties, combustion characteristics, ground and flight test results of propellants used for a rocket-assisted projectile are described according to several aluminum contents. As the aluminum content increased, initial viscosity decreased, viscosity build-up accelerated, and combustion rate and pressure exponent decreased. In the ground fire test, the total impulse of the rocket-assisted projectiles containing 10 wt% of aluminum were 5% higher than that of the rocket-assisted projectiles containing 2 wt% and 18 wt% of aluminum. The motor efficiency compared to the theoretical performance was 85.6% with 18 wt% of aluminum, the lowest value among the propellant compositions.

Comparison of Theoretical Analysis with Test Results of Floating Ring Seals for the LRE Turbo Pump (액체 추진 로켓 터보 펌프용 플로팅 링 실에 대한 해석 및 실험 결과의 비교 연구)

  • Lee, Yong-Bok;An, Kyoung-Min;Kim, Chang-Ho;Ha, Tae-Woong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.6 s.27
    • /
    • pp.21-27
    • /
    • 2004
  • The floating ring seal has an advantage to find the optimum position by itself, which is used in the turbo pump of a liquid rocket. The main purpose of seals is to reduce the leakage. Especially, seals of the turbo pump for the liquid rocket engine are operated under the serious conditions such as high pressure above 10 MPa, very low temperature about $-180^{\circ}C$ and high rotating speed above 25,000 rpm. So, rotordynamic stability is very important for the system stability. In this paper, the leakage and dynamic characteristics of floating ring seals were investigated by a experimental and analytical method. The theoretical results of the leakage performance for the floating ring seal showed much higher than that of experimental results. On the other hand, the results of stiffness and damping characteristics showed similarity each other. As the shaft speed was increasing, the whirl frequency ratio was increased in the experimental results.

Study on Starting Pressure of Supersonic Exhaust Diffusers to Simulate high Altitude Environment (고고도 모사용 초음속 디퓨져의 시동압력에 대한 연구)

  • Yoon, Sang-Kyu;Yeom, Hyo-Won;Kim, Jin-Kon;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.16-23
    • /
    • 2008
  • Theoretical and numerical approaches were conducted in order to study supersonic exhaust diffusers to simulate high altitude performance of rockets on the ground. A physical model of concern includes a rocket motor, vacuum chamber, and diffuser, which have axisymmetric configurations. An analysis was conducted to investigate operation characteristics of supersonic exhaust diffusers from a flow-development point of view. Emphasis was placed on theoretical formulation to predict the starting pressure of diffusers, the effect of the vacuum chamber size, and the minimum starting pressure of the rocket motor to start the diffuser.

Numerical Study of Rocket Exhaust Plume with Equilibrium Chemical Reaction and Thermal Radiation (평형화학반응과 복사열전달을 고려한 로켓 플룸 유동 해석)

  • Shin J.-R.;Choi J.-Y.;Choi H.-S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.146-153
    • /
    • 2004
  • The Numerical study has been carried out to investigate the effects of chemical reaction and thermal radiation on the rocket plume flow-field at various altitudes. The theoretical formulation is based on the Navier-Stokes equations for compressible flows along with the infinitely fast chemistry and thermal radiation. The governing equations were solved by a finite volume fully-implicit TVD(Total Variation Diminishing) code which uses Roe's approximate Riemann solver and MUSCL(Monotone Upstream-centered Schemes for Conservation Laws) scheme. LU-SGS (Lower Upper Symmetric Gauss Seidel) method is used for the implicit solution strategy. An equilibrium chemistry module for hydrocarbon mixture with detailed thermo-chemical properties and a thermal radiation module for optically thin media were incorporated with the fluid dynamics code. In this study, kerosene-fueled rocket was assumed operating at O/F ratio of 2.34 with a nozzle expansion ratio of 6.14. Flight conditions considered were Mach number zero at ground level, Mach number 1.16 at altitude 5.06km and Mach number 2.9 at altitude 17.34km. Numerical results gave the understandings on the detailed plume structures at different altitude conditions. The diffusive effect of the thermal radiation on temperature field and the effect of chemical recombination during the expansion process could be also understood. By comparing the results from frozen flow and infinitely fast chemistry assumptions, the excess temperature of the exhaust gas resulting from the chemical recombination seems to be significant and cannot be neglected in the view point of performance, thermal protection and flow physics.

  • PDF

Measurement of Performance of High Speed Under Water Vehicle by Using Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.131-136
    • /
    • 2017
  • High speed under water vehicle by using solid rocket motor, which is a natural cavitation type, was tested. The vehicle's speed and running distance was measured, and pressure sensors installed on the surface of the vehicle show pressure-time history of pressures according to the development of the supercavitation. Underwater cameras installed on the wall of the test pool recorded whole processes from the onset of the supercavitation to fully developed one. CNU-SuperCT based on 2-dimensional inviscid theoretical analysis was used to simulate the test result. In consideration of CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Also, pictures from underwater cameras support the test results.

  • PDF

Measurement of Performance of High Speed Underwater Vehicle with Solid Rocket Motor(II) (로켓추진을 이용한 고속 수중운동체의 수중 주행성능 측정 결과(II))

  • Yoon, Hyun-Gull;Lee, Hoy-Nam;Cha, Jung-Min;Lim, Seol;Suh, Suhk-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.12-17
    • /
    • 2018
  • A natural cavitation-type high-speed underwater vehicle with solid rocket motor is tested, and its speed and running distance are measured. The outputs from pressure sensors on the surface of the vehicle reveal a pressure-time history reflecting the development of supercavitation. Underwater cameras installed on the wall of the test pool record the entire process from the onset of supercavitation to its full development. CNU-SuperCT, based on two-dimensional inviscid theoretical analysis, is used to simulate test results. Considering CNU-SuperCT does not include the control fins of the vehicle, simulation results agree with test results very well. Additionally, pictures from underwater cameras support the test results.

Design Technique for Minimizing the Crosstalk Effect in Multiaxis Thrust Measurement Stand (다축 시험대의 상호 간섭 최소화 설계기법)

  • Kim, Joung-Keun;Yoon, Il-Sun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2007
  • This paper described design method to minimize the crosstalk effect of multiaxis thrust measurement stand which can measure the thrust vector control performance of Solid Rocket Motor. This paper presents a theoretical solution for predicting the magnitude of crosstalk and calculates design sensitivity. The results indicate that the most important parameter of crosstalk is the displacement of flexure-loadcell-flexure assembly. And shape, dimension and mechanical properties of flexure and loadcell can also influence the magnitude of crosstalk.