• Title/Summary/Keyword: Theoretical Deflection

Search Result 172, Processing Time 0.027 seconds

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

Analysis of Structural Performance of Wood Composite I and Box Beam on Cross Section Component (I) - Calculation and Analysis of Flexural Rigidity and Deflection - (단면구성요소(斷面構成要素)에 관(關)한 목질복합(木質複合) I및 Box형 보의 구조적(構造的) 성능(性能) 분석(分析) (I))

  • Oh, Sei-Chang;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.40-55
    • /
    • 1991
  • To investigate the influence of cross section geometries on the behavior of composite beams in the case of small span to depth ratio and deep beams. the static flexural behavior of composite I-beams and Box- beams was evaluated. 12 types of composite I -beams composed of LVL flanges and particleboard or plywood web and 3 types of composite Box-beams composed of LVL flanges and plywood web were tested under one-point loading. The load-deflection curves were almost linear to failure, therefore, the behavior of tested composite beams was elastic. The theoretical flexural rigidity of composite beams was calculated and compared with observed flexural rigidity. The highest value was found in I-W type beams and the lowest value was found in G-P type beams. The difference between theoretical and observed flexural rigidity was small. Theoretical total deflection of tested composite beams was calculated using flexural rigidity and compared with actual deflection. Shear deflection of these beams was evaluated by the approximation method, solid crosss section method and elementary method. The difference between actual deflection and expected deflection was not found in D, E and F type beams. This defference was small in G, H and I type beams or Box-beam.

  • PDF

Long-term deflection of high-strength fiber reinforced concrete beams

  • Ashour, Samir A.;Mahmood, Khalid;Wafa, Faisal F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.531-546
    • /
    • 1999
  • The paper presents an experimental and theoretical study on the influence of steel fibers and longitudinal tension and compression reinforcements on immediate and long-term deflections of high-strength concrete beams of 85 MPa (12,300 psi) compressive, strength. Test results of eighteen beams subjected to sustained load for 180 days show that the deflection behavior depends on the longitudinal tension and compression reinforcement ratios and fiber content; excessive amount of compression reinforcement and fibers may have an unfavorable effect on the long-term deflections. The beams having the ACI Code's minimum longitudinal tension reinforcement showed much higher time-dependent deflection to immediate deflection ratio, when compared with that of the beams having about 50 percent of the balanced tension reinforcement. The results of theoretical analysis of tested beams and those of a parametric study show that the influence of steel fibers in increasing the moment of inertia of cracked transformed sections is most pronounced in beams having small amount of longitudinal tension reinforcement.

The Sensitivity Enhancement for the Deflection Sensor of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통 편각검출기에 관한 연구)

  • 이상집;이은방
    • Journal of the Korean Institute of Navigation
    • /
    • v.12 no.2
    • /
    • pp.33-42
    • /
    • 1988
  • As a basic study for enhancing the sensitivity of the follow-up system of the marine gyrocompass, the geometric characteristics of the deflection sensor were investigated and the theoretical model of it was formulated. The output signal voltage of the deflection sensor was esamined by changing the attitude of gyrosphere against follow-up container. The characteristics of the output are found to be indentical with those of the distance difference versus the relative azimuthal deflection of the gyrosphere against the follow up container. On the base of the theoretical model, some useful points for the design of the deflection sensor are suggested as following : 1. When the difference between semidiamter of gyrophere and that of the follow-up container decreases, the sensitivity of deflection sensor increases. 2. If the semidiameter difference of two spheres is constant, the sensitivity of deflection sensor is proportional to the magnitude of the semidiamter of each sphere. 3. The farther the gyrosphere is deviated from the center of follow-up container, the higher the sensitivity of deflection sensor is. 4. It is recommendable that the value of the datum deflection of the electrodes on the gyrosphere should be within the range between $4^{\circ}$ and $16^{\circ}$deviated from north-south line.

  • PDF

Deflection and Stress Distributions of a Circular Plate under the Constant Pressure with respect to the Element types (균등 압력이 부과된 원형판의 변형에 대한 해석요소의 정확성 비교)

  • Lee, Hyoungwook
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • The analysis of circular plates under the constant pressure are simplified as the loading conditions of the circular manhole. The theoretical solution of circular plates with respect to the constant pressures are derived by using the governing equation of plate deflection. The deflection and the radial stress distributions were calculated by the theory. Finite element solutions were conducted with respect to the element types of the continuum elements. The most accurate element was selected by comparisons of the theoretical solutions and simulated solutions. The C3D8I element type in brick-type continuum elements gave in a good accordance with the theoretical solutions.

A Theoretical Study for the Thermal Conductivity Measurement of Anisotropic Material using Photothermal Deflection Spectroscopy (광열편향법을 이용한 이방성 재료의 열전도계수 측정에 관한 이론적 연구)

  • Jeon, Pil-Soo;Yoo, Jai-Suk;Kim, Hyun-Jung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2465-2470
    • /
    • 2007
  • We have analyzed the three-dimensional thermal conduction in anisotropic materials using nonsymmetric-Fourier transforms. And a complete theoretical treatment of the photothermal deflection spectroscopy has been performed for thermal conductivity measurement in anisotropic medium. Thermal conductivity tensor was determined by the deflection angle and phase angle with the relative position between the heating and probe beams. The influence of the parameters, such as modulation frequency of the heating beam, the thermal conductivity tensor, was investigated.

  • PDF

Flexural behavior and a modified prediction of deflection of concrete beam reinforced with a ribbed GFRP bars

  • Ju, Minkwan;Park, Cheolwoo;Kim, Yongjae
    • Computers and Concrete
    • /
    • v.19 no.6
    • /
    • pp.631-639
    • /
    • 2017
  • This study experimentally investigated the flexural capacity of a concrete beam reinforced with a newly developed GFRP bar that overcomes the lower modulus of elasticity and bond strength compared to a steel bar. The GFRP bar was fabricated by thermosetting a braided pultrusion process to form the outer fiber ribs. The mechanical properties of the modulus of elasticity and bond strength were enhanced compared with those of commercial GFRP bars. In the four-point bending test results, all specimens failed according to the intended failure mode due to flexural design in compliance with ACI 440.1R-15. The effects of the reinforcement ratio and concrete compressive strength were investigated. Equations from the code were used to predict the deflection, and they overestimated the deflection compared with the experimental results. A modified model using two coefficients was developed to provide much better predictive ability, even when the effective moment of inertia was less than the theoretical $I_{cr}$. The deformability of the test beams satisfied the specified value of 4.0 in compliance with CSA S6-10. A modified effective moment of inertia with two correction factors was proposed and it could provide much better predictability in prediction even at the effective moment of inertia less than that of theoretical cracked moment of inertia.

Minimization of Initial Deflection of Multi-Layered Micro-Actuator with Step-Up Structure (Step-Up 구조를 갖는 다층박막 초소형 구동소자의 초기변형 최소화에 관한 연구)

  • Lee, Hee-Joong;Kang, Shin-Ill
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2415-2420
    • /
    • 2002
  • In the present study, a new anchor design was proposed to minimize the initial deflection of micro multi-layer cantilever beam with step-up structure, which is a key component of thin film micro-mirror array. It is important to minimize the initial deflection, caused by residual stress, because it reduces the performance of the actuation. Theoretical and experimental studies were conducted to examine the cause of the initial bending deflection. It was found that the bending deflection at the anchor of the cantilever beam was the primary source of initial deflection. Various anchor designs were proposed and the initial deflections for each design were calculated by finite element analysis. The analysis results were compared with experiments. To reduce the initial deflection a secondary support was added to the conventional structure. The optimal shapes were obtained by simulation and experiment. It was found from the analysis that the ratio or horizontal and vertical dimensions of secondary support was the governing factor, which affected the initial deflection.

Theoretical and Finite Element Analysis for Structural Strength of Paperboard-stacked Structure (종이성형구조물의 구조적 강도에 대한 이론분석과 유한요소해석)

  • Park, Jong-Min;Lee, Myung-Hoon
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.5 no.1
    • /
    • pp.13-20
    • /
    • 1999
  • Not only is it important that the physical properties of the paperboards be appropriate for the intended end use, but the proper arrangement of the component in the built-up board is essential for attaining the optimum moment of inertia and the maximum load-carrying ability in a box. It is known to be impossible to estimate the stress distribution and deflection pattern by experiments or theoretical analysis when the corrugated fiberboard get the bending force. This study was tried theoretical and finite element analysis to analyze structural strength characteristics of corrugated fiberboards. If the linerboard and corrugating medium of every corrugated fiberboards is made from the same material, the location of neutral axis comes close to inside liner in order of DMA, DM, DMB, SW and DW, and moment of inertia of area decreases in order of DMA, DMB, DW, DM and SW. With the finite element analysis, deflection of applied loads represented SW, DM, DMA, and TW in the order of their value.

  • PDF

Flexural performance of FRP-reinforced concrete encased steel composite beams

  • Kara, Ilker Fatih
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.775-793
    • /
    • 2016
  • This paper presents a numerical method for estimating the curvature, deflection and moment capacity of FRP-reinforced concrete encased steel composite beams (FRP-RCS). A sectional analysis is first carried out to predict the moment-curvature relationship from which beam deflection and moment capacity are then calculated. Comparisons between theoretical and experimental results of tests conducted elsewhere show that the proposed numerical technique can accurately predict moment capacity and deflection of FRP-RCS composite beam. The numerical results also indicated that beam ductility and stiffness are improved when encased steel is added to FRP reinforced concrete beams. ACI, ISIS and Bischoff models for deflection prediction compared well at low load, however, significantly underestimated the experimental results for high load levels.