• 제목/요약/키워드: The toxicity of binary and ternary mixtures

검색결과 2건 처리시간 0.021초

농약 혼용에 따른 꿀벌유충 독성의 상승 및 상쇄 영향 (Synergistic and Antagonistic Interactions for Pesticide mixtures to Honeybee Larvae Toxicity)

  • 백민경;임정택;전경미;박경훈;최용수;이명렬;배철한;김진호;문병철
    • 한국환경농학회지
    • /
    • 제35권4호
    • /
    • pp.241-246
    • /
    • 2016
  • BACKGROUND: Recently, the widespread distribution of pesticides in the hive has been of concern about pesticide exposure on honeybee (Apis mellifera L.) health. Larval toxicity was adapted to assess the synergistic and antagonistic interaction of cumulative mortality to the honeybee larvae of the four most common pesticides detected in pollen. METHODS AND RESULTS: Acetamiprid($3.0{\mu}l/L$), chlorothalonil ($803.0{\mu}l/L$), coumaphos ($128.0{\mu}l/L$), and tau-fluvalinate ($123.0{\mu}l/L$) were tested in combination; binary, ternary and four component mixture. Larvae were exposed to four pesticides mixed in diet at the average levels detected in pollen. As a result, synthetic toxicity was observed in the binary mixture of acetamiprid with coumaphos. The binary and ternary component mixtures of tested pesticides have mostly demonstrated additive effect in larval bees. The significant antagonistic effects were found in four parings of mixtures including chlorothalonil added to acetamiprid/tau-fluvalinate or acetamiprid/coumaphos/tau-fluvalinate, and tau-fluvalinate added to acetamiprid/chlorothalonil or acetamiprid/coumaphos/chlorothalonil. CONCLUSION: Interactions between combinations of four pesticides showed mostly additive or antagonistic effects in larval bees. Therefore, predicting the larval mortality of pesticides mixtures on the basis of the results of single pesticide may actually overestimate the risk. We suggest that pesticide mixture in pollen be evaluated by adding their toxicity together for complete data on interactions.

Toxicity Evaluation of Complex Metal Mixtures Using Reduced Metal Concentrations: Application to Iron Oxidation by Acidithiobacillus ferrooxidans

  • Cho, Kyung-Suk;Ryu, Hee-Wook;Choi, Hyung-Min
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권7호
    • /
    • pp.1298-1307
    • /
    • 2008
  • In this study, we investigated the inhibition effects of single and mixed heavy metal ions ($Zn^{2+},\;Ni^{2+},\;Cu^{2+},\;and\;Cd^{2+}$) on iron oxidation by Acidithiobacillus ferrooxidans. Effects of metals on the iron oxidation activity of A. ferrooxidans are categorized into four types of patterns according to its oxidation behavior. The results indicated that the inhibition effects of the metals on the iron oxidation activity were noncompetitive inhibitions. We proposed a reduced inhibition model, along with the reduced inhibition constant ($\alpha_i$), which was derived from the inhibition constant ($K_I$) of individual metals and represented the tolerance of a given inhibitor relative to that of a reference inhibitor. This model was used to evaluate the toxicity effect (inhibition effect) of metals on the iron oxidation activity of A. ferrooxidans. The model revealed that the iron oxidation behavior of the metals, regardless of metal systems (single, binary, ternary, or quaternary), is closely matched to that of any reference inhibitor at the same reduced inhibition concentration, $[I]_{reduced}$, which defines the ratio of the inhibitor concentration to the reduced inhibition constant. The model demonstrated that single metal systems and mixed metal systems with the same reduced inhibitor concentrations have similar toxic effects on microbial activity.