• Title/Summary/Keyword: The tidal flat

Search Result 657, Processing Time 0.025 seconds

Ecological Value of Tidal-flat Island in Jeonnam Province and Its Validity for Designating Provincial Park (전남 섬갯벌의 생태적 가치와 도립공원 지정의 타당성)

  • Hong, Sun-Kee;Kim, Jae-Eun;Oh, Kang-Ho;Ihm, Hyun-Shik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.41-52
    • /
    • 2013
  • To decide on the designation of a tidal-flat Provincial Park, a study area was defined in line with domestic and international case studies of Provincial Parks. A survey on landscape, geology, biota, and cultural resources was conducted in four tidal-flat areas including Bigeum-myeon and Docho-myeon, which are part of the UNESCO Biosphere Reserve in Shinan, Jeollanam-do. To identify areas most suitable to be designated as Provincial Park, a PSR evaluation process was adopted. This has resulted in the selection of the 'Palgupo' area surrounding Bigeum, Docho, Haui, Shinui, Jaeun, Amtae, Palgeum, Anjwa and Jangsan. Also the tidal-flat areas at Aphae-myeon, which are ecologically linked with the Jeungdo Tidal-flat Provincial Park, were included. The selected areas resulting from this study will meet various characteristics of tidal-flat ecosystems including naturalness, ecological network, rarity and eco-cultural diversity. After the tidal-flat Provincial Park has been specified, there is a need to perform a long-term sustainable management plan.

Changes of Sedimentary Environment in the Saemangeum Tidal Flat on the West Coast of Korea (새만금 갯벌의 퇴적환경 변화)

  • Woo, Han-Jun;Choi, Jae-Ung;An, Soon-Mo;Kwon, Su-Jae;Koo, Bon-Joo
    • Ocean and Polar Research
    • /
    • v.28 no.4
    • /
    • pp.361-368
    • /
    • 2006
  • The Saemangeum tidal flat with an area of approxirnately $233km^2$ is one of the biggest estuarine tidal flats on the west coast of Korea. Because of its location in the estuary of Mangyeong and Dongjin Rivers, the tidal flat receives large amount of sediments. A 33-km long sea dyke, enclosing a coastal zone of $401km^2$, was constructed to reclaim tidal flat in the Saemangeum area. The dyke construction radically changes the local tidal current regime and estuarine circulation. These have an effect on sedimentary environments in the tidal flat. On the tidal flats of the study area net deposition occurred, but net erosion occurred near tidal channel in 2004. The comparison of topography and surface sediments in summer 2004 with those in summer 1988 before the dyke construction showed that elevation increased with maximum 80cm and mean grain sizes were fining at Gwanghwal tidal flats. Sedimentary facies of two cores from Gwanghwal tidal flat revealed homogeneous layers in the upper part suggesting rapid deposition after the dyke construction. The sedimentation rate in Gwanghwal tidal flat(GW 6) using $^{210}Pb$ analysis was about 5.4cm/yr which is well matched with the sedimentation pattern revealed by change in topography.

Studies on the Natural Mortality of the Young Short Necked Clam, Tapes japonica-I. Seaonal Variation of the tidal Temperature, Sainity , and the Effect of Overflowing Fresh Water on the Subterranean Salinity of the Tidal Flat at Low Tide (바지락 치패의 폐사에 관한 연구-I 간척지의 간출시에 있어서의 온도, 염분변화와 유입하천수의 지하염분에 미치는 영향)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.9 no.1
    • /
    • pp.1-6
    • /
    • 1966
  • Frequently , large masses of the young short necked clam, Tapes japonica , die at their tidal flats in summer and this phenomenon has not been explained clearly. The purpose of the present investigation is to study the thermal condition and the chlorinity level of tidal flats in which the young clam appears to be injured. A study is also mad efor the burrowing organism in the lower layer of the esturay over which the fresh water flow during the low tide. Observation are made at five places of the tidal flat near Ikawazu Fixheries Laboratory of Tokyo University during the ebb and flow tide period of the spring tide. The diurnal and monthly changes of tidal temperatures and chlorinities are measured. Results of the study are ; 1. The surface temperature of the tidal flat increases with the ebb tide, reaches the highest between 12-14PM, and gradually decreases thereafter. The temperatures of tidal flat below 5 and 10 cm increase gradually until the flow tide reaches the surface. 2. At the spring tide in summer , the diurnal change of surface of the tidal flat temperature is very extensive ; it reaches 37-39$^{\circ}C$ in August. At the depths of 5 and 10 cm the temperature remains at 33 $^{\circ}C$ and 31$^{\circ}C$ , respectively. 3. The chlorinity of the tidal flat is higher during May through June and lower July through August, and this seems to be related to the amount of rainfall. 4. The chlorinity of the surface of tidal flat increases slightly during the ebb and flow tide periods. The observed higher chlorinity of surface of the tidal flat was 18.82% Cl. 5. At near the esturay, the fresh water that overflows the tidal flat affects the chlorinity of the surface but no such influence to the depth of the flat. 6. From above observations, it is assumed that the young short necked clam in the tidal flat could be exposed to the severe change of environmental conditions. The high temperature of the tidal flat in summer and the low chlorinity of it at flood period may be considered as the change in environment.

  • PDF

Estimation of morphological change using waterline method in the Ganghwado tidal flats

  • Lee, Yoon-Kyung;Ryu, Joo-Hyung;Eom, Jin-Ah;Jo, Min-Jeong
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.22-24
    • /
    • 2007
  • Waterline extraction is the one of widely used methods for studying changes in tidal flat environment and coastlines using multi-temporal optical images such as Landsat TM and Landsat ETM+. High dynamics of tidal currents and land reclamation which accelerate sedimentation and/or erosion cause waterline change in tidal flats. The amount of sediment deposited or eroded can be evaluated by precisely estimating waterline changes in tidal flats. The objective of this study is to detect the change of waterlines during 17 years and analyze the trends of erosion and sedimentation in the study areas. The Ganghwado tidal flat on the west coast of the Korean Peninsula was selected. The study area is famous for high dynamics of tidal currents and vast tidal flats. Land reclamation which has been carried out on a large scale is also considered as one of elements that have accelerated the environmental changes in this tidal flat. In this study, we acquired 26 waterlines from Landsat TM and Landsat ETM+ images. We extracted the waterline from each satellite image to generate a digital elevation map (DEM) which was used for reference and to compare with the other waterline which was extracted from DEM having a same tide. The result of comparison well depicted the areas of dominant sedimentation and erosion, and general trends of sedimentation and erosion according to sub-regions are also revealed during the investigation time. Results showed that erosion during a decade was dominant at the west of the Southern Ganghwado tidal flat, while sedimentation was dominant at the wide channel between the Southern Ganghwado tidal flat and the Yeongjongdo tidal flat. This area has been commonly affected by high currents and sedimentation energy. Although we were not able to verify the accuracy of the waterline changes, this result clearly showed the waterline change and therefore, the waterline extraction method used in this study has proven as an effective tool for long term tidal change estimation.

  • PDF

Analysis on Topography and Exposure Duration of Siheung Tidal Flat Using Remote Sensing Techniques (위성영상 분석기술을 이용한 시흥갯벌의 지형 및 노출시간 분석)

  • Koo, Bon Joo;Kim, Minkyu
    • Ocean and Polar Research
    • /
    • v.35 no.4
    • /
    • pp.291-298
    • /
    • 2013
  • In order to investigate the topography and exposure duration of the Siheung tidal flat, tidal ranges and DEM constructed by remote sensing techniques were analyzed. A cross-sectional diagram of the intertidal area reveals that it is relatively flat in the upper zone and then abruptly plunges into the bottom of the main channel where elevations increase in an upstream direction. The waterline during the Highest Low Water (HLW) is drawn back to the bottom of the channel at the middle part of the tidal flat and is formed along the slant of the channel during the Lowest High Water (LHW). The intertidal zone is located between -410 cm and 510 cm in terms of elevation and its total area is $0.65km^2$. An area between the Highest High Water (HHW) and Lowest High Water (LHW), occupying about 80% of the total area, occupies $0.52km^2$ of total area and accounts for 56% of the exposure duration. The boundary of wetland protection area in the Siheung tidal flat did not exactly coincide with the intertidal regime and differs by more than 15%. This study, which precisely analyzed the tidal flat area, tidal environment, and topography, would be useful in making a conservation plan and in learning how to use a wetland protection area in a sustainable manner.

Estimation of Ability for Water Quality Purification Using Ecological Modeling on Tidal Flat (생태계 모델을 이용한 갯벌의 수질정화능력 산정)

  • Shin, Bum-Shick;Kim, Kyu-Han
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.2 s.75
    • /
    • pp.42-49
    • /
    • 2007
  • It has been known that shallow-water regions, such as tidal flats, sea grass and sea weed beds have water purification capability, and they also serve as nursery grounds for many fishes. On the other hand, tidal flat areas are economically attractive sites for reclamation, to be used for developing industries. When developing shallow-water areas, we have to propose a plan to mitigate the environmental impact associated with such a development plan. However, it is difficult to estimate the affects on the ecosystem and water purification, and the literature related to this matter is insufficient. In order to evaluate the ability of coastal tidal flat and to predict the future changes, it is necessary to develop a reliable prediction technique and construction of data by using a field investigation. In this study, we carried out a numerical model test for the tidal flat ecosystem, using the pelagic system and the benthic system, simultaneously, in order to show a change in the tidal flat ecosystem. The flow of nitrogen, phosphorus and carbon has been identified as a primary consideration of marine ecosystem components, and the capability of water purification and the change of the tidal flat were predicted using this flow. In order to make a more reliable prediction, a field investigation to determine tide, current and creatures of the object coastal area has been done. The purification capability of this shallow-water region is estimated from the model results. According to the results of experiments, the tidal flat has a capability of water purification (Sink) of 11mgN/m2/day, but the other area has a load (Source) of 20mgN/m2/day. As a result, we could confirm that the tidal flat of an object coastal area plays an important role in water purification.

Changes in Sediment Characteristics in the Eastern Tidal Flat of Donggum Island in Ganghwa, west coast of Korea (강화 동검도 동부 갯벌의 퇴적 특성 변화)

  • Woo, Han Jun;Jang, Seok;Kwon, Su Jae
    • Journal of Wetlands Research
    • /
    • v.14 no.3
    • /
    • pp.375-384
    • /
    • 2012
  • The sedimentary processes of the Ganghwa tidal flat has been changed over 20 years because of the large-scale construction projects. The sedimentary environment of the Donggum tidal flat, located in the eastern part of Ganghwa tidal flat and in the lower reaches of Yeomha channel, was affected by changes the tidal current regime and estuarine circulation. These resulted an occurrence of rapid deposition in the tidal flat. The silt-clay laminated silt facies in the upper parts of two core sediments suggested that deposition had been relatively high in the tidal flat. The sedimentation rates from the cores using $^{210}Pb$ analysis were 3.25cm/year(st. 3) and 3.47cm/year(st. 5). However the short-term sediment accumulation rates from 2010 to 2012 were mostly less than 1cm/year, indicated that the sediments deposited relatively low rates. As a result, the sediment in the Donggum tidal flat rapidly accumulated during 2000s due to constructions of man-made structures. Recently, the increase of elevation in the tidal flat resulted to show relatively low sedimentation rate with seasonal variations.

A Study on the Environment Change of Tidal Flat in the Cheonsu Bay Using Remotely Sensed Data (원격탐사 자료를 이용한 천수만 간석지 환경변화에 관한 연구)

  • Jang, Dong-Ho;Chi, Kwang-Hoon;Lee, Hyoun-Young
    • Journal of Environmental Impact Assessment
    • /
    • v.11 no.1
    • /
    • pp.51-66
    • /
    • 2002
  • The purpose of this study is to analyze the geomorphological environment changes of tidal flat in the Cheonsu Bay. Especially, it centers on the changes in the sedimentary environment using remote sensing data. Multi-temporal Landsat data and topographic maps were used in this study. The results are summarized as follows: the tidal flat of Cheonsu Bay changes in many ways depending on the direction of the tidal current. In the neighborhood of Ganwoldo, the scale of the tidal flat has continuously been expanded due to the superiority of sedimentation after a tide embankment was built. When we analyzed the grain size of sediments and implemented in-situ field survey, it was found that the innermost part of the bay consists of a mud flat, with the midway part mixed flat, and the nearest part to the sea sand flat. On the other hand, in the neighborhood of Seomot isle and its beach, sedimentation is superior in the eastern part whereas erosion is superior in the western part. In other words, the western coast of the beach is contacted with the open seas and under much influence of ocean wave. The eastern coast is placed at the entrance of the bay and has sand bar and tidal flat developed due to submarine deposits that are accumulated on the sea floor by the tidal current. In conclusions, remote sensing methods can be effectively applied for quantitative analysis of geomorphological changes in tidal flat, and it is expected that the proposed schemes can be applied to another geomorphological environments such as beach, sand dune, and sand wave.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Technology Assessment for Design of an Environment-Friendly Vehicle for Tidal Flat Zone (친환경성 갯벌차량 설계를 위한 기술 분석)

  • Yeu, Tae-Kyeong;Hong, Sup;Kim, Hyong-Woo;Choi, Jong-Su;Lim, Dong-Il
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.257-260
    • /
    • 2006
  • West coast of Korea belongs to the five largest tidal-flat zones in the world. Aiming at the efficient management and preservation of the eco-system and the enhancement of the bio-productivity of the tidal-flat zones, development of a environment-friendly vehicle for tidal-flat area is being attempted. This paper deals with the description of the characteristics of the tidal-flat zones of west coast of Korea, the technology assessment of the related products in the ATV(All-Terrain Vehicle) market, the demand assessment for the resident people.

  • PDF