• 제목/요약/키워드: The society of intelligence-information complex

검색결과 146건 처리시간 0.028초

CNN-LSTM 조합모델을 이용한 영화리뷰 감성분석 (Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제25권4호
    • /
    • pp.141-154
    • /
    • 2019
  • 인터넷 기술과 소셜 미디어의 빠른 성장으로 인하여, 구조화되지 않은 문서 표현도 다양한 응용 프로그램에 사용할 수 있게 마이닝 기술이 발전되었다. 그 중 감성분석은 제품이나 서비스에 내재된 사용자의 감성을 탐지할 수 있는 분석방법이기 때문에 지난 몇 년 동안 많은 관심을 받아왔다. 감성분석에서는 주로 텍스트 데이터를 이용하여 사람들의 감성을 사전 정의된 긍정 및 부정의 범주를 할당하여 분석하며, 이때 사전 정의된 레이블을 이용하기 때문에 다양한 방향으로 연구가 진행되고 있다. 초기의 감성분석 연구에서는 쇼핑몰 상품의 리뷰 중심으로 진행되었지만, 최근에는 블로그, 뉴스기사, 날씨 예보, 영화 리뷰, SNS, 주식시장의 동향 등 다양한 분야에 적용되고 있다. 많은 선행연구들이 진행되어 왔으나 대부분 전통적인 단일 기계학습기법에 의존한 감성분류를 시도하였기에 분류 정확도 면에서 한계점이 있었다. 본 연구에서는 전통적인 기계학습기법 대신 대용량 데이터의 처리에 우수한 성능을 보이는 딥러닝 기법과 딥러닝 중 CNN과 LSTM의 조합모델을 이용하여 감성분석의 분류 정확도를 개선하고자 한다. 본 연구에서는 대표적인 영화 리뷰 데이터셋인 IMDB의 리뷰 데이터 셋을 이용하여, 감성분석의 극성분석을 긍정 및 부정으로 범주를 분류하고, 딥러닝과 제안하는 조합모델을 활용하여 극성분석의 예측 정확도를 개선하는 것을 목적으로 한다. 이 과정에서 여러 매개 변수가 존재하기 때문에 그 수치와 정밀도의 관계에 대해 고찰하여 최적의 조합을 찾아 정확도 등 감성분석의 성능 개선을 시도한다. 연구 결과, 딥러닝 기반의 분류 모형이 좋은 분류성과를 보였으며, 특히 본 연구에서 제안하는 CNN-LSTM 조합모델의 성과가 가장 우수한 것으로 나타났다.

빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단 (Animal Infectious Diseases Prevention through Big Data and Deep Learning)

  • 김성현;최준기;김재석;장아름;이재호;차경진;이상원
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.137-154
    • /
    • 2018
  • 조류인플루엔자와 구제역 같은 동물감염병은 거의 매년 발생하며 국가에 막대한 경제적 사회적 손실을 일으키고 있다. 이를 예방하기 위해서 그간 방역당국은 다양한 인적, 물적 노력을 기울였지만 감염병은 지속적으로 발생해 왔다. 최근 빅데이터와 딥러닝 기술을 활용하여 감염병의 예측모델을 개발하고자 하는 시도가 시작되고 있지만, 실제로 활용가능한 모델구축 연구와 사례보고는 활발히 진행되고 있지 않은 실정이다. KT와 과학기술정보통신부는 2014년부터 국가 R&D사업의 일환으로 축산관련 차량의 이동경로를 분석하여 예측하는 빅데이터 사업을 수행하고 있다. 동물감염병 예방을 위하여 연구진은 최초에는 차량이동 데이터를 활용한 회귀분석모델을 기반으로 한 예측모델을 개발하였다. 이후에는 기계학습을 활용하여 좀 더 정확한 예측 모델을 구성하였다. 특히, 2017년 예측모델에서는 시설물에 대한 확산 위험도를 추가하였고 모델링의 하이퍼 파라미터를 다양하게 고려하여 모델의 성능을 높였다. 정오분류표와 ROC 커브를 확인한 결과, 기계 학습 모델보다 2017년 구성된 모형이 우수함을 확인 할 수 있었다. 또한 2017에는 결과에 대한 설명을 추가하여 방역당국의 의사결정을 돕고 이해관계자를 설득할 수 있는 근거를 확보하였다. 본 연구는 빅데이터를 활용하여 동물감염병예방시스템을 구축한 사례연구로 모델주요변수값, 이에따른 실제예측성능결과, 그리고 상세하게 기술된 시스템구축 프로세스는 향후 감염병예방 영역의 지속적인 빅데이터활용 및 분석 모델 개발에 기여할 수 있을 것이다. 또한 본 연구에서 구축한 시스템을 통해 보다 사전적이고 효과적인 방역을 할 수 있을 것으로 기대한다.

기간별 이슈 매핑을 통한 이슈 생명주기 분석 방법론 (Analyzing the Issue Life Cycle by Mapping Inter-Period Issues)

  • 임명수;김남규
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.25-41
    • /
    • 2014
  • 최근 스마트 기기를 통해 소셜미디어에 참여하는 사용자가 급격히 증가하고 있다. 이에 따라 빅데이터 분석에 대한 관심이 높아지고 있으며 최근 포털 사이트에서 검색어로 자주 입력되거나 다양한 소셜미디어에서 자주 언급되는 단어에 대한 분석을 통해 사회적 이슈를 파악하기 위한 시도가 이루어 지고 있다. 이처럼 다량의 텍스트를 통해 도출된 사회적 이슈의 기간별 추이를 비교하는 분석을 이슈 트래킹이라 한다. 하지만 기존의 이슈 트래킹은 두 가지 한계를 가지고 있다. 첫째, 전통적 방식의 이슈 트래킹은 전체 기간의 문서에 대해 일괄 토픽 분석을 실시하고 각 토픽의 기간별 분포를 파악하는 방식으로 이루어지므로, 새로운 기간의 문서가 추가되었을 때 추가된 문서에 대해서만 분석을 추가 실시하는 것이 아니라 전체 기간의 문서에 대한 분석을 다시 실시해야 한다는 실용성 측면의 한계를 갖고 있다. 둘째, 이슈는 끊임 없이 생성되고 소멸될 뿐 아니라, 때로는 하나의 이슈가 둘 이상의 이슈로 분화하고 둘 이상의 이슈가 하나로 통합되기도 한다. 즉, 이슈는 생성, 변화(병합, 분화), 그리고 소멸의 생명주기를 갖게 되는데, 전통적 이슈 트래킹은 이러한 이슈의 가변성을 다루지 않았다는 한계를 갖는다. 본 연구에서는 이러한 한계를 극복하기 위해 대상 기간 전체의 문서를 한꺼번에 분석하는 방식이 아닌 세부 기간별 문서에 대해 독립적인 분석을 수행하고 이를 통합할 수 있는 방안을 제시하였으며, 이를 통해 새로운 이슈가 생성되고 변화하며 소멸되는 전체 과정을 규명하였다. 또한 실제 인터넷 뉴스에 대해 제안 방법론을 적용함으로써, 제안 방법론의 실무 적용 가능성을 분석하였다.

텍스트마이닝을 활용한 북한 관련 뉴스의 기간별 변화과정 고찰 (An Investigation on the Periodical Transition of News related to North Korea using Text Mining)

  • 박철수
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.63-88
    • /
    • 2019
  • 북한의 변화와 동향 파악에 대한 연구는 북한관련 정책에 대한 방향을 결정하고 북한의 행위를 예측하여 사전에 대응 할 수 있다는 측면에서 매우 중요하다. 현재까지 북한 동향에 대한 연구는 전문가를 중심으로 과거 사례를 서술적으로 분석하여, 향후에 북한의 동향을 분석하고 대응하여 왔다. 이런 전문가 서술 중심의 북한 변화 및 동향 연구에서 비정형데이터를 이용한 텍스트마이닝 분석이 더해지면 보다 과학적인 북한 동향 분석이 가능할 것이다. 특히 북한의 동향 파악과 북한의 대남 관련 행위와 연관된 연구는 통일 및 국방 분야에서 매우 유용하며 필요한 분야이다. 본 연구에서는 북한의 신문 기사 내용을 활용한 텍스트마이닝 방법으로 북한과 관련한 핵심 단어를 구축하였다. 그리고 본 연구는 김정은 집권 이후 최근의 남북관계의 극적인 관계와 변화들을 기반으로 세 개의 기간을 나누고 이 기간 내에 국내 언론에 나타난 북한과 관련성이 높은 단어들을 시계열적으로 분석한 연구이다. 북한과 관련한 주요 단어들을 세 개의 기간별로 분류하고 당시에 북한의 태도와 동향에 따라 해당 단어와 주제들의 관련성이 어떻게 변화하였는지를 파악하였다. 본 연구는 텍스트마이닝을 이용한 연구가 남북관계 및 북한의 동향을 이해하고 분석하는 방법론으로서 얼마나 유용한 것이지를 파악하는 것이었다. 앞으로 북한의 동향 분석에 대한 연구는 물론 대북관계 및 정책에 대한 방향을 결정하고, 북한의 행위를 사전에 예측하여 대응 할 수 있는 북한 리스크 측정 모델 구축을 위한 연구로 진행 될 것이다.

시각적 특징을 기반한 샷 클러스터링을 통한 비디오 씬 탐지 기법 (Video Scene Detection using Shot Clustering based on Visual Features)

  • 신동욱;김태환;최중민
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.47-60
    • /
    • 2012
  • 비디오 데이터는 구조화되지 않은 복합 데이터의 형태를 지닌다. 이러한 비디오 데이터의 효율적인 관리 및 검색을 위한 비디오 데이터 구조화의 중요성이 대두되면서 콘텐츠 내 시각적 특징을 기반으로 비디오 씬(scene)을 탐지하고자 하는 연구가 활발히 진행되었다. 기존의 연구들은 주로 색상 정보만을 이용하여 샷(shot) 간의 유사도 평가를 기반한 클러스터링(clustering)을 통해 비디오 씬을 탐지하고자 하였다. 하지만 비디오 데이터의 색상 정보는 노이즈(noise)를 포함하고, 특정 사물의 개입 등으로 인해 급격하게 변화하기 때문에 색상만을 특징으로 고려할 경우, 비디오 샷 혹은 씬에 대한 올바른 식별과 디졸브(dissolve), 페이드(fade), 와이프(wipe)와 같은 화면의 점진적인 전환(gradual transitions) 탐지는 어렵다. 이러한 문제점을 해결하기 위해, 본 논문에서는 프레임(frame)의 컬러 히스토그램과 코너 에지, 그리고 객체 컬러 히스토그램에 해당하는 시각적 특징을 기반으로 동일한 이벤트를 구성하는 의미적으로 유사한 샷의 클러스터링을 통해 비디오 씬을 탐지하는 방법(Scene Detector by using Color histogram, corner Edge and Object color histogram, SDCEO)을 제안한다. SDCEO는 샷 바운더리 식별을 위해 컬러 히스토그램 분석 단계에서 각 프레임의 컬러 히스토그램 정보를 이용하여 1차적으로 연관성 있는 연속된 프레임을 샷 바운더리로 병합한 후, 코너 에지 분석 단계에서 병합된 샷 내 처음과 마지막 프레임의 코너 에지 특징 비교를 통하여 샷 바운더리를 정제하여 최종 샷을 식별한다. 키프레임 추출 단계에서는 샷 내 프레임간 유사도 비교를 통해 모든 프레임과 가장 유사한 프레임을 각 샷을 대표하는 키프레임으로 추출한다. 그 후, 비디오 씬 탐지를 위해, 컬러 히스토그램과 객체 컬러 히스토 그램에 해당하는 프레임의 시각적 특징을 기반으로 상향식 계층 클러스터링 방법을 이용하여 의미적인 연관성을 지니는 샷의 군집화를 통해 비디오 씬을 탐지하는 방법이다. 본 논문에서는 SDCEO의 프로토 타입을 구축하고 3개의 비디오 데이터를 이용한 실험을 통하여 SDCEO의 효율성을 평가하였고 샷 바운더리 식별의 성능의 정확도는 평균 93.3%, 비디오 씬 탐지 성능의 정확도는 평균 83.3%로 만족할만한 성능을 보였다.

데이터마이닝을 활용한 사랑의 형태에 따른 연인관계 몰입수준 및 관계 지속여부 예측 (Prediction of commitment and persistence in heterosexual involvements according to the styles of loving using a datamining technique)

  • 박윤주
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.69-85
    • /
    • 2016
  • 연인과의 성공적인 관계형성은 인생의 만족감을 결정짓는 핵심적인 요소 중 하나이다. 기존에 심리학 분야에서는 성공적인 연인관계에 영향을 미치는 요인들에 대한 다양한 연구가 수행되어 왔으나, 주로 통계적인 분석기법에 기반하고 있기 때문에 복잡한 비선형의 관계를 분석하고, 특징을 추출하는 데에는 한계가 있었다. 이에, 본 연구는, 기존의 통계적인 분석 기법과 더불어, 데이터마이닝의 의사결정나무 분석기법을 활용하여 사랑의 형태에 따른 연인관계의 몰입(commitment) 수준과 관계지속 여부를 분석하였다. 특히, 기존 연구에서 도출된 주요 변인들 이외에 사랑의 여섯 가지 형태인 에로스(eros), 루두스(ludus), 스트로게(storge), 매니아(mania), 프래그마(pragma) 그리고 아가페(agape)를 추가적으로 고려하여, 이들이 연인관계에서 서로에 대한 몰입수준 및 연인관계 지속여부에 어떠한 영향을 미치는지 분석하고, 예측하는 모형을 수립하였다. 본 연구에는 실제 남녀커플 105쌍, 총 210명에 대한 데이터가 활용되었다. 본 연구결과 연인관계 몰입수준 및 관계 지속여부의 영향요인으로, 기존에 심리학 분야에서 제시된 변수들 이외에, 에로스, 아가페, 프래그마 등이 유의한 영향을 미친다는 것을 확인하였다. 특히, 남성은 아가페적 사랑의 형태가 몰입에 중요한 영향을 미치는 반면, 여성은 에로스적 사랑의 형태가 더욱 중요한 영향을 미치는 것으로 나타났다. 또한, 연인관계 지속여부에는 남성의 나르시시즘, 만족, 투자 및 매니아적 성향이 영향을 주고 있는 것으로 나타난 반면, 여성의 경우, 여성이 남성을 매니아적으로 사랑하는 정도만이 영향을 주고 있어, 남성이 관계의 지속 또는 결별에 더욱 결정적인 영향을 미치고 있는 것을 알 수 있었다. 이러한 연구는 데이터마이닝의 적용분야를 심리학 영역으로 확장한 융합연구로, 연인관계에 대한 새로운 분석을 시도하였다는 점에서 의의가 있으며, 조화로운 연인관계를 형성하는데 실질적인 시사점을 제공할 수 있을 것으로 기대된다.

머신러닝 기반 기업부도위험 예측모델 검증 및 정책적 제언: 스태킹 앙상블 모델을 통한 개선을 중심으로 (Machine learning-based corporate default risk prediction model verification and policy recommendation: Focusing on improvement through stacking ensemble model)

  • 엄하늘;김재성;최상옥
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.105-129
    • /
    • 2020
  • 본 연구는 부도위험 예측을 위해 K-IFRS가 본격적으로 적용된 2012년부터 2018년까지의 기업데이터를 이용한다. 부도위험의 학습을 위해, 기존의 대부분 선행연구들이 부도발생 여부를 기준으로 사용했던 것과 다르게, 본 연구에서는 머튼 모형을 토대로 각 기업의 시가총액과 주가 변동성을 이용하여 부도위험을 산정했으며, 이를 통해 기존 방법론의 한계로 지적되어오던 부도사건 희소성에 따른 데이터 불균형 문제와 정상기업 내에서 존재하는 부도위험 차이 반영 문제를 해소할 수 있도록 하였다. 또한, 시장의 평가가 반영된 시가총액 및 주가 변동성을 기반으로 부도위험을 도출하되, 부도위험과 매칭될 입력데이터로는 비상장 기업에서 활용될 수 있는 기업 정보만을 활용하여 학습을 수행함으로써, 포스트 팬데믹 시대에서 주가 정보가 존재하지 않는 비상장 기업에게도 시장의 판단을 모사하여 부도위험을 적절하게 도출할 수 있도록 하였다. 기업의 부도위험 정보가 시장에서 매우 광범위하게 활용되고 있고, 부도위험 차이에 대한 민감도가 높다는 점에서 부도위험 산출 시 안정적이고 신뢰성 높은 평가방법론이 요구된다. 최근 머신러닝을 활용하여 기업의 부도위험을 예측하는 연구가 활발하게 이루어지고 있으나, 대부분 단일 모델을 기반으로 예측을 수행한다는 점에서 필연적인 모델 편향 문제가 존재하고, 이는 실무에서 활용하기 어려운 요인으로 작용하고 있다. 이에, 본 연구에서는 다양한 머신러닝 모델을 서브모델로 하는 스태킹 앙상블 기법을 활용하여 개별 모델이 갖는 편향을 경감시킬 수 있도록 하였다. 이를 통해 부도위험과 다양한 기업정보들 간의 복잡한 비선형적 관계들을 포착할 수 있으며, 산출에 소요되는 시간이 적다는 머신러닝 기반 부도위험 예측모델의 장점을 극대화할 수 있다. 본 연구가 기존 머신러닝 기반 모델의 한계를 극복 및 개선함으로써 실무에서의 활용도를 높일 수 있는 자료로 활용되기를 바라며, 머신러닝 기반 부도위험 예측 모형의 도입 기준 정립 및 정책적 활용에도 기여할 수 있기를 희망한다.

지식 공유의 파레토 비율 및 불평등 정도와 가상 지식 협업: 위키피디아 행위 데이터 분석 (Pareto Ratio and Inequality Level of Knowledge Sharing in Virtual Knowledge Collaboration: Analysis of Behaviors on Wikipedia)

  • 박현정;신경식
    • 지능정보연구
    • /
    • 제20권3호
    • /
    • pp.19-43
    • /
    • 2014
  • 전체 결과의 80%가 전체 원인의 20%에 의해 일어난다는 파레토 법칙(Pareto principle)은 상위 20%의 핵심 고객에 대한 우선적인 마케팅을 비롯하여 기업 경영의 많은 부분에서 적용되어 왔다. 파레토 법칙과는 대조적으로, 80%의 사소한 다수가 20%의 핵심적인 소수보다 우월한 가치를 창출한다는 롱테일 법칙(Long Tail theory)은 ICT(Information and Communication Technology)의 발전과 함께 새로운 경영 패러다임으로 주목 받아오고 있다. 본 연구의 목적은 경영 현장에서 양대 흐름을 형성해온 이러한 법칙들이 변화무쌍한 글로벌 가상화 환경에서 기업의 핵심적인 성공 요인이라고 할 수 있는 가상 지식 협업에는 어떻게 관련되는지를 규명하는 것이다. 이를 위해, 대표적인 가상 지식 협업 커뮤니티인 위키피디아에서 품질 최상위 등급인 피쳐드 아티클(Featured Article) 레벨로 승급된 2,978개의 아티클에 대한 협업 행위를 분석하였다. 즉, 각 아티클 그룹에서 편집 횟수 기준 상위 20%에 속하는 참여자들의 총 편집 횟수가 전체 편집 횟수에서 차지하는 비율인 파레토 비율(Pareto ratio)이 지식 협업 효율성과 어떤 관계를 가지고 있는지를 도출하였다. 그리고, 이러한 연구를 편집 참여를 통한 지식 공유에 대한 전체적인 불평등 정도를 나타내는 지니 계수(Gini coefficient)의 영향 및 그룹의 작업 특성을 반영하도록 확장하였다. 결과적으로, 지식 공유의 파레토 비율과 지니 계수가 증가하면 지식 협업 효율성도 높아지지만, 이러한 변수들이 일정 수준 이상으로 증가하면 오히려 지식 협업 효율성이 낮아지는 역 U자(inverted U-shaped) 관계가 있음을 확인하였다. 그리고, 이러한 관계는 인지적 노력을 상대적으로 더 많이 요구하는 학문적인 특성의 작업에서 더 민감하게 작용하는 것으로 보인다.

각인각색, 각봇각색: ABOT 속성과 소비자 감성 기반 소셜로봇 디자인평가 모형 개발 (Different Look, Different Feel: Social Robot Design Evaluation Model Based on ABOT Attributes and Consumer Emotions)

  • 하상집;이준식;유인진;박도형
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.55-78
    • /
    • 2021
  • 최근 인간과 상호작용할 수 있는 '소셜로봇'을 활용하여 복잡하고 다양한 사회문제를 해소하고 개인의 삶의 질을 제고하려는 시도가 주목받고 있다. 과거 로봇은 인간을 대신해서 산업 현장에 투입되고 노동력을 제공해주는 존재로 인식되었다. 그러나 오늘날의 로봇은 각종 산업분야를 관통하는 핵심 키워드인 'Smart'의 등장을 기점으로 인간과 함께 공존하며 사회적 교감이 가능한 '소셜로봇(Social Robot)'으로 그 개념이 확장되고 있다. 구체적으로 고객을 응대하는 서비스 로봇, 에듀테인먼트(Edutainment) 성격의 로봇, 그리고 인간과의 교감, 상호작용에 주목한 감성로봇 등이 출시되고 있다. 그러나 4차 산업혁명을 계기로 ICT 서비스 환경이 급격한 발전을 이룬 현재까지 소셜로봇의 대중화는 체감되지 않고 있다. 소셜로봇의 핵심 기능이 사용자와의 사회적 교감임을 고려하면, 소셜로봇의 대중화를 촉진하기 위해서는 기기에 적용되는 기술 이외의 요소들도 중요하게 고려할 필요가 있다. 본 연구는 로봇의 디자인 요소가 소셜로봇에 대한 소비자들의 구매를 이끌어내는데 중요하게 작용할 것으로 판단한다. 로봇의 외형이 유발하는 감성은 사용자의 인지, 추론, 평가와 기대를 형성하는 과정에서 중요한 영향을 미치며 나아가 로봇에 대한 태도와 호감 그리고 성능 추론 등에도 영향을 줄 수 있다. 그러나 소셜로봇에 대한 기존 연구들은 로봇의 개발방법론을 제안하거나, 소셜로봇이 사용자에게 제공하는 효과를 단편적으로 검증하는 수준에 머무르고 있다. 따라서 본 연구는 소셜로봇의 외형으로부터 사용자가 느끼는 감성이 소셜로봇에 대한 사용자의 태도에 미치는 영향을 검증해보고자 한다. 이때 서로 다른 출처의 이종 데이터 간 결합을 통하여 소셜로봇 디자인평가 모형을 구성한다. 구체적으로 소셜로봇의 외형에 대하여 사전에 구축된 ABOT Database로부터 다수의 소셜로봇에 대한 세 가지 정량적 지표 데이터를 확보하였다. 소셜로봇의 디자인 감성은 (1) 기존의 디자인평가 문헌과 (2) 소셜로봇 제품 후기와 블로그 등의 온라인 구전, (3) 소셜로봇 디자인에 대한 정성적인 인터뷰를 통해 도출하였다. 이후 사용자 설문을 통하여 각각의 소셜로봇에 대해 사용자가 느끼는 감성과 태도에 대한 평가를 수집하였다. 세부적인 감성 평가항목 23개에 대하여, 차원 축소 방법론을 통해 6개의 감성 차원을 도출하였다. 이어서 도출된 감성 차원들이 사용자의 소셜로봇에 대한 태도에 미치는 영향을 검증하기 위해 회귀분석을 수행하여 감성과 태도 간의 관계를 파악해 보았다. 마지막으로 정량적으로 수집된 소셜로봇의 외형에 대한 지표가 감성과 태도 간의 관계에 영향을 줄 수 있음을 검증하기 위해 조절회귀분석을 수행하였다. 기술적인ABOT Database 속성 지표들과 감성 차원들 간의 순수조절효과를 확인하고, 도출된 조절효과에 대한 시각화를 수행하여 외형, 감성, 그리고 태도 간의 관계를 다각적인 관점에서 해석하였다. 본 연구는 이종간 데이터를 연결하여 소셜로봇의 기술적 속성과 소비자 감성, 태도까지 변수 간 관계를 총체적으로 실증 분석했다는 점에서 이론적 공헌을 가지며, 소셜로봇 디자인 개발 전략에 대한 의사결정을 지원하기 위한 기준으로 소비자 감성의 활용 가능성을 제안하였다는 실무적 의의를 가진다.

디지털 트윈 기반 노지스마트팜 활용방안 (Utilization of Smart Farms in Open-field Agriculture Based on Digital Twin)

  • 김석구
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2023년도 춘계학술대회
    • /
    • pp.7-7
    • /
    • 2023
  • 현재 다양한 4차산업의 주요기술로는 빅데이터, 사물인터넷, 인공지능, 블록체인, 혼합현실(MR), 드론 등이 대표적인 기술들이다. 특히 최근에 세계적인 기술적 트랜드로 자리 잡고 있는 "디지털 트윈(digital twin)은 물리적인 사물과 컴퓨터에 동일하게 표현되는 가상 모델의 개념으로서. 실제 물리적인 자산 대신 소프트웨어로 가상화한 자산의 Digital twin을 만들어 모의실험함으로써 실제 농작업의 특성(현재 상태, 농업생산성, 농작업 시나리오, 등)에 대한 정확한 정보를 얻을 수 있다. 본 연구에서는 노지노업 주산지에 대한 디지털 트윈 데이터를 구축하고 스마트팜 단지를 설계 및 구축하여, 통합관제시스템 운영을 통해 자동 물관리, 원격생육예찰, 드론방제, 병충해 예찰작업 등으로 농작업을 효율화하고자 한다. 또한, 빅데이터 분석을 통한 적정량의 비료·농약사용으로 환경적 부하를 최소화하여, 노동력절감, 농작물 생산성을 향상할 수 있는 디지털 환경제어농업을 국내에 보급하고자 한다. 이러한 노지농업 기술은 디지털 농작업 및 재배관리 등 으로 노동력이 절감되고, 기후변화에 대비한 물이용 최적화와 토양오염예방 효과를 기대할 수 있으며, 전국 재배환경 디지털 데이터 확보를 통한 노지작물의 정량적인 생육관리가 가능하게 된다. 또한 농업생산성 향상을 통한 탄소중립 RED++ 활동을 직접적으로 실천을 할 수 있는 방안이다. 취득된 고정밀·고화질 영상기반 농작물 생육데이터취득을 통한 생육현황 분석과 예측은 디지털 영농작업관리에 매우 효과적이다. 실제 국립식량과학원 남부작물부에서는 지중점적, 땅속배수 등 다양한 종류의 노지스마트팜 연구개발을 진행하였다. 특히, 올해부터는 전국농업기술원 단지를 대상으로 노지스마트팜 시설 구축 및 기술 보급을 통한 사업화를 본격적으로 진행하고 있다. 본 연구에서는 디지털 트윈 기술과 노지스마트팜 기술을 융합한 농업분야 구축사례와 향후 활용방안에 대하여 서술하고자 한다.

  • PDF