• Title/Summary/Keyword: The point of contact

Search Result 1,213, Processing Time 0.033 seconds

Thermal Analysis for High Efficiency of Point Contact Solar Cell (후면전극형 태양전지의 열해석에 관한 연구)

  • Nam, Tae-Jin;Kang, Ey-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.5
    • /
    • pp.351-354
    • /
    • 2011
  • This paper was carried about thermal analysis for high efficiency point contact solar cell. Therefore, we carried about 2-D device and process simulator according to design and process parameters. As a result of simulations, power transfer efficiency have decreased more increasing temperature. Especially, power transfer efficiency of room temperature have been showed 25%. The other hand, power transfer efficiency of 350 K kalvin temperature have been showed 20%. Therefore, we will considered design with thermal dissipation of device.

A Study on the Characteristics of the Wheel/Roller Contact Geometry (차륜/궤조륜 기하학적 접촉특성에 관한 연구)

  • Hur, Hyun-Moo
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.5 s.36
    • /
    • pp.618-623
    • /
    • 2006
  • Understanding the contact between wheel and rail is a starting point in railway vehicle dynamic research area and especially analysis for the contact geometry between wheel and rail is important. On the one hand, the critical speed as the natural characteristics of rolling-stock is generally tested on the roller rig. The geometrical characteristics of the wheel/roller contact on the roller rig are different from these of the general wheel/rail contact because the longitudinal radius of roller is not infinite compared with rail. Thus, in this paper we developed the algorithm to analyze the wheel/roller contact geometry of our roller rig which is constructed now and analyzed the difference between whee/roller contact and wheel/rail contact. In conclusion, we found that the yaw motion of wheelset and the roller radius influence the geometrical contact parameters in wheel flange contact area.

Effect of Experimental Muscle Fatigue on Muscle Pain and Occlusal Pattern (실험적으로 유발되는 근피로가 근통증 및 교합양상에 미치는 영향)

  • Kim, Jae-Chang;Lim, Hyun-Dae;Kang, Jin-Kyu;Lee, You-Mee
    • Journal of Oral Medicine and Pain
    • /
    • v.33 no.3
    • /
    • pp.279-294
    • /
    • 2008
  • This study aimed to make an analysis of the occlusion in the state of muscle fatigue produced by excessive mouth opening and clenching during the dental treatment to control the dental pain and to evaluate the sensory nerve in the muscle pain state. Most of the reasons why patients visit the dental office result in pain-either conceivably the dental origin pain or the non-dental origin pain. The dental offices have many therapeutic actions to produce the masticatory muscle fatigue for the treatment. Dental treatment with long minutes of mouth opening can cause some headaches, masticatory muscle pain and mouth opening difficulties. Patients with mastication problems who visits a dental office to alleviate pain run against another unexpected pain with other aspects. This study uses T-scan II system(Tekscan Co., USA) for the evaluation on the occlusal pattern in the experimental muscle fatigue after clenching, opening the mouth excessively and chewing gum. The occlusal contact pattern is analyzed by the contact timing, namely first, intercuspal, maximum and end point of contact. This inspection was performed at frequencies of 2000Hz, 250 Hz and 5 Hz before and after each experimental muscle pain was produced to 24 subjects who had normal occlusion without the orthodontic treatment or a wide range of the prosthesis by using $neurometer^{\circledR}$ CPT/C(Neurotron, Inc. Baltimore, Maryland, USA). The measuring sites were mandibular nerve experimental muscle fatigue respectively. This study could obtain the following results after the assessment of occlusion and sensory nerve of the experimental muscle fatigue. 1. There were the fastest expression after the excessive mouth opening in muscle fatigue and after tooth clenching in muscle pain. In the visual analog scale that records the subjective level, there was the highest scale after the clenching in the muscle fatigue in jumping off the point of pain. 2. Tooth contact time, contact force, relative contact force on the point of the first contact had no difference, and there were decreases in the contact force after the excessive mouth opening on intercuspal position point, after the excessive mouth opening and the gum chewing on the point of the maximum, and in the contact time after all the experimental muscle fatigue state on the point of the end contact. 3. There was no statistic significance in the current perception threshold before and after the experimental muscle fatigue. 4. There was no significant difference in the contact number, the maximal contact number on the point of the first contact, and the contact number after the mouth opening and gum chewing on the point of the intercuspal position and the contact number after the experimental muscle fatigue on the maximum point, and showed significant decreases. In conclusion, it was found that the occlusal pattern can cause the changes on the case of the clinical muscle weakness by intra-external oral events. It was important that the sedulous attention to details is required during dental treatment in case of excessive mouth opening, mastication and clenching.

Multisensor System Integrating Optical Tactile and F/T Sensors for Determination of Type and Position of 3D Contact Surface (3차원 접촉면의 인식 및 위치의 결정의 위한 광촉각센서와 역각센서의 다중센서시스템)

  • 한헌수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.2
    • /
    • pp.10-19
    • /
    • 1996
  • This paper presents a finger-shaped multisensor system which can measure the tyep and position of a target surface by contactl. The multi-sensor system consists of a sphere-shpaed optical tactile sensor located at the finger tip and a force/torque sensor located at the joint of a finger. The optial tactile sensor determines the type and position of the target surface using the shape and position of the CCD image of the touching area generated by a contact between the sensor and the taget surface. The force/torque sensor also determines the position and surface normal vector by applying the distributionof forces and torques t the contact point to the equations of finger shape. The measurements on the position and surface normal vector at a contact point obtined by two individual sensors are fused using a statistical method. The integrated sensor system has 0.8mm error in position measurement and 1.31$^{\circ}$ error in normal vector measurement. The developed sensor system has many applications, such as autonomous compliance control, automatic grasping and recognition, etc.

  • PDF

Contact treatment algorithm of z-map model with vertical walls and its application to the deep drawing of a clover shaped cup (Z-map으로 표현된 수직 벽면을 가진 금형에서의 접촉처리법과 클로버형 컵 디프드로잉 공정의 해석에의 응용)

  • 서의권;박정환;심현보
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.5
    • /
    • pp.38-45
    • /
    • 1998
  • The Z-map model which is quite similar to the non-parametric patch is widely used to describe the shape of a surface because of its simplicity. Despite the inherent advantage of z-map model. it has drawbacks that there exists difficulty in expressing the vertical walls and its related contact treatment method. In the region of vertical walls, there is a convergence problem in searching the contact point. In this study a contact point finding scheme is presented, based on the z value of the z-map model on the sheet normal direction. To show the utility of this scheme a compared with the experimental results. The effects of the Z-map grid distances and the interpolations of the inside Z-map value are also discussed.

  • PDF

A development of the 2-point Whee-Rail Contact Algorithm (휠-레일 2점 접촉 해석 알고리즘 개발에 관한 연구)

  • Jeong, Gi-Beom;Park, Tae-Won;Park, Jae-Heung;Chung, Nam-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1888-1893
    • /
    • 2011
  • Considering the dynamic performance and stability of railroad vehicles has begun to grab the attention because of developing the high speed train recently. A development based on an analysis of dynamics and verification has to be required to study the stability of vehicle performance. Several ways of analysis were using the look-up table to apply the wheel-rail contact characteristics quickly, whereas there is a constraint of the wheelset lateral displacement. In this study, an development of searching the wheel-rail contact position has been provided. The 2-point contact between wheel and rail during the driving condition can be calculated by numerical analysis. Moreover, a reliability is verified by comparing the result with a commercial program.

  • PDF

Effect of Abrasive Particles on Frictional Force and Abrasion in Chemical Mechanical Polishing(CMP) (CMP 연마입자의 마찰력과 연마율에 관한 영향)

  • Kim, Goo-Youn;Kim, Hyoung-Jae;Park, Boum-Young;Lee, Hyun-Seop;Park, Ki-Hyun;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.10
    • /
    • pp.1049-1055
    • /
    • 2004
  • Chemical Mechanical Polishing (CMP) is referred to as a three body tribological system, because it includes two solids in relative motion and the CMP slurry. On the assumption that the abrasives between the pad and the wafer could be a major reason not only for the friction force but also for material removal during polishing, the friction force generated during CMP process was investigated with the change of abrasive size and concentration of CMP slurry. The threshold point of average coefficient of friction (COF) with increase in abrasives concentration during interlayer dielectric (ILD) CMP was found experimentally and verified mathematically based on contact mechanics. The predictable models, Mode I (wafer is in contact with abrasives and pad) and Mode II (wafer is in contact with abrasives only), were proposed and used to explain the threshold point. The average COF value increased in the low abrasives concentration region which might be explained by Mode I. In contrast the average COF value decreased at high abrasives concentration which might be regarded to as Mode II. The threshold point observed seemed to be due to the transition from Mode I to Mode II. The tendency of threshold point with the variation of abrasive size was studied. The increase of particle radius could cause contact status to reach transition area faster. The correlation between COF and material removal rate was also investigated from the tribological and energetic point of view. Due to the energy loss by vibration of polishing equipment, COF value is not proportional to the material removal rate in this experiment.

OCCLUSAL ANALYSIS OF PATIENTS WITH TEMPOROMANDIBULAR DYSFUNCTION BY USE OF T-SCAN SYSTEM (T-Scan system을 이용한 측두하악 장애 환자의 교합 분석에 관한 연구)

  • Park Seon-Joo;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.121-140
    • /
    • 1991
  • Fifteen dental college students of Chosun University without the abnormal occlusion, the history and symptom of temporomandibular dysfunction(TMD), and who had all permanent teeth except third molar and the fifteen moderate group and the fifteen severe group classified according to Helkimo's dysfunction index among patients on the basis of the symptom of TMD were selected. The occlusal contact, occlusal force and occlusal interference in eccentric movement was studied and analyzed using T-Scan system. The result were as follows : 1. The TLR centering around midsagittal axis was located at $1.42{\pm}0.82mm$ in control group, $3.36{\pm}1.45mm$ in severe group, and as TMD was heavier, occlusal contact was located at the farther point from midsagittal axis. 2. The PLR from the first contact to the fifth contact centering around midsagittal axis was located at $1.73{\pm}1.78mm$ in control group, $3.36{\pm}1.41mm$ in moderate group, and $5.39{\pm}4.32mm$ in severe group, and as TMD was heavier, occlusal contact was located at the farther point from midsgittal axis. 3. The TFB, PFB, RFB and LFB of occlusal contact centering around incisal axis had no significant difference statistically among control group, moderate group, and severe group, and it was located at first molar. 4.The LF and RF was smaller in TMD group than in control group. 5. The LR moment of occlusal force centering around midsagittal axis was located at $178.51{\pm}139.81N.mm$ in control group, $466.25{\pm}296.47N.mm$ in moderate group, and $749.18{\pm}588.18N.mm$ in severe group. And as TMD was heavier, it was located at the farther point from midsagittal axis. 6. The RL and LL of occlusal force centering around incisal axis had not-significance statistically among control group, moderate group, and severe group, and it was at the first molar. 7. The number of occlusal interference of the eccentric movement was increased in the patients of TMD.

  • PDF

Study on Dynamic Crawling of The Five-bar Planar Mechanism (5절 평면형 메커니즘의 동적 포복에 관한 연구)

  • Lee J.H.;Lim N.S.;Kim W.K.;Yi B.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1045-1049
    • /
    • 2005
  • In this paper, the dynamic crawling of a five-bar planar mechanism is investigated. One complete cycle of the crawling selected in this study consists of four different steps, i) sliding at one contact point between the mechanism and the ground, ii) changing its configuration without sliding at two contact points, iii) sliding at the other contact point, and iv) again changing its configuration without sliding at two contact points. In this type of crawling, the crawling mechanism maintains the shape of the parallel structure throughout a complete crawling cycle. The modeling algorithm for serial manipulators proposed by M. Thomas and et al.[1] is employed by introducing imaginary joints and links which represent the contact interfaces between the one end of the mechanism and the ground, while the other end of the mechanism is regarded as an end-effector of the imaginary serial manipulator which treats the reaction force and torque at the contact point as external forces. Then, a complete cycle of dynamic crawling of the mechanism is investigated through various computer simulations. The simulation result show that the stable crawling characteristics of the mechanism could be secured when the proper configurations depending on specified frictional constraints are met.

  • PDF

Efficient Digitizing in Reverse Engineering By Sensor Fusion (역공학에서 센서융합에 의한 효율적인 데이터 획득)

  • Park, Young-Kun;Ko, Tae-Jo;Kim, Hrr-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.9
    • /
    • pp.61-70
    • /
    • 2001
  • This paper introduces a new digitization method with sensor fusion for shape measurement in reverse engineering. Digitization can be classified into contact and non-contact type according to the measurement devices. Important thing in digitization is speed and accuracy. The former is excellent in speed and the latter is good for accuracy. Sensor fusion in digitization intends to incorporate the merits of both types so that the system can be automatized. Firstly, non-contact sensor with vision system acquires coarse 3D point data rapidly. This process is needed to identify and loco]ice the object located at unknown position on the table. Secondly, accurate 3D point data can be automatically obtained using scanning probe based on the previously measured coarse 3D point data. In the research, a great number of measuring points of equi-distance were instructed along the line acquired by the vision system. Finally, the digitized 3D point data are approximated to the rational B-spline surface equation, and the free-formed surface information can be transferred to a commercial CAD/CAM system via IGES translation in order to machine the modeled geometric shape.

  • PDF