• Title/Summary/Keyword: The period of Vibration

Search Result 449, Processing Time 0.024 seconds

Considerations for Seismic Design of Low-Rise Residential Bearing Wall Buildings with Pilotis (필로티형 저층 내력벽주택의 내진설계 고려사항)

  • Lee, Seung Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.31-42
    • /
    • 2019
  • In this study, the results of an analytical investigation on the seismic behavior of two residential 4-story bearing wall buildings with pilotis, each of which has symmetric or unsymmetric wall arrangement at their piloti level, are presented. The dynamic characteristics and lateral resistance of the piloti buildings were investigated through linear elastic and nonlinear static analyses. According to the results, the analytical natural period of vibration of the piloti buildings were significantly shorter than the fundamental period calculated in accordance with KBC 2016. In the initial elastic behavior, the walls resisting in-plane shear contributed to the lateral stiffness and strength, while the contribution of columns resisting flexural moments in double curvature was limited. However, after the shear cracking and yielding of the walls occurred, the columns significantly contributed to the residual strength and ductility. Based on those investigations, design recommendations of low-rise bearing wall buildings with piloti configuration are given.

Evaluation of Agricultural Reservoir Behavior by Seismic Shaking Table Test (지진 모형시험을 통한 농업용 저수지 거동 평가)

  • Lim, Seongyoon;Song, Changseob;Kim, Myeonghwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.55-63
    • /
    • 2015
  • Embankment of agricultural reservoir started by four major rivers project. Most agricultural reservoirs must insure the agricultural water, they need must be ensured stability of embankment. Recently, there is a growing interest in seismic stability of structure by earthquake. Results of evaluation of the structural stability through seismic vibration test and numerical analysis, maximum displacement and the maximum acceleration is a similar trends. Appeared by increasing occurrence of the value of the displacement and acceleration of the structure with the result long period wave type in accordance with the seismic wave in the case of seismic waves, which shows the results of similar tendency as long period wave type consists of waveform seismic acceleration. Model test and numerical analysis results with in order to increase embankment agricultural reservoir, the displacement was found to ensure it is displayed within one percentage structural stability of the embankment.

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

An Experimental Study on the Strengthening Effect of RC Beam subjected to Repeated Loading during CFS Strengthening Process (탄소섬유 보강 중에 반복하중을 받은 RC보의 보강효과에 관한 실험적 연구)

  • Jang, Hee-Suk;Kim, Hee-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.183-189
    • /
    • 2006
  • When RC structures are repaired or strengthened using FRP, it is required to cure for some Period under certain air temperature and then it is hopeful to avoid detrimental action caused by external vibration sources during that period. Therefore, an effect of repeated loading during Carbon Fiber Sheet(CFS) strengthening Process on the strengthening efficiency is studied through an experiment for a number of RC beams. Experimental results showed that the curing time of 24 hours without any repeated loading after CFS attachment were recommended for 1 ply strengthening, and 12 hours for 2 plies strengthening.

A Study on Subjective Nise Evaluation of Rdesidential Area on Aircraft Noise near Airport - Case Study on Taegu Airport - (공항 인근주민들의 항공기소음에 대한 피해의식 구조에 관한 연구 - 대구공항을 사례지역으로 -)

  • 김재석
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.41-48
    • /
    • 2000
  • Evaluation model for damage consciousness was established through the survey of 2,210 residents' consciousness on aircraft noise near Taegu Airport. There were none who replied that the level of the aircraft noise was as los as it was quiet. 77(3.5%) people replied the noise was normal, and 2,133(95.5%) people said it was noisy. As to the period of time when the aircraft noise occurred, 51%, 97%, 86%, 0.6% of the residents pointed out the morning time, the day time, the evening time, and the night time, respectively. Because of aircraft noise, 73%, 88%, 70%, 77%, 78%, and 33% of the residents felt it disturbing indoor conversation, telephoning, watching TV or listening to the ratio, reading or meditating, working, sleeping, and studying, respectively. It was examined that the bad effects of aircraft noise on the health were severe : 43% of the resident said they experienced embarrassment. 52% astonishment, 66% absence of mind, 61% heart-beating. 77% headaches, 78% earache, and 93% displeasure. For the survey of the residents' damage consciousness about aircraft noise, the level of aircraft noise was set as an objective variable, and gender, age, occupation. Education, the type of house, the structure of windows, the consciousness of settlement in the district, and the period of residence were set as explanatory variables. And the quantification theory I was applied to the analysis. The most influencing factor of the damage consciousness on aircraft noise was the education, the second occupation, the third age, the forth the consciousness of settlement, the fifth the period of residence, the sixth gender, the seventh the type of house, and the least influencing factor among them was the structure of windows. These findings will be a useful guideline when the government seeks to set up policies which will help solve the resident's noise problems near Taegu Airport.

  • PDF

Development of Control Algorithms Considering the Effect of a Control Sampling Period on the Total Amount of Switching for a Switched System (컨트롤 샘플링 주기가 스위칭 시스템의 결합-분리 횟수에 미치는 영향을 고려한 제어 알고리듬 개발)

  • Joung, Jin-Wook;Chung, Lan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.67-76
    • /
    • 2009
  • Recently, the active interaction control (AIC) system was proposed as a semi-active control system. The AIC system consists of a primary structure and an auxiliary structure. The objective of the AIC system is to control the response of the primary structure through engagement and disengagement between the primary and auxiliary structures. Previous switching control algorithms have been shown to be effective in reducing the response of the primary structure. However, they have the main drawback of requiring an excessive engagement-disengagement frequency and high interaction force. In this paper, the regions in which the switching is activated and the regions in which the switching is deactivated are described separately, to effectively determine the engagement or the disengagement. The general relationship between the switching regions and the deactivated switching regions selected according to the engagement-disengagement conditions is described within the newly-developed comprehensive switching framework. The proposed engagement-disengagement conditions are designed within a comprehensive switching framework, to reduce engagement-disengagement frequency and interaction force. Furthermore, the effect of a control sampling period on the AIC system is explained in terms of the engagement-disengagement frequency. The effectiveness of the proposed algorithms and the effect of the control sampling period are considered for a single degree of freedom model under free vibration. It is observed that increasing the duration of stay by using a large control sampling period prevents the AIC system from activating the possible chance of switching. The proposed algorithms are shown to be effective, both in restricting ineffective switching and in reducing interaction force.

Beat control method of Korean bells using artificial dumshoi (인공 덤쇠를 이용한 한국종의 맥놀이 조절법)

  • Kim, Seockhyun;Lee, Jae Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.3
    • /
    • pp.192-200
    • /
    • 2021
  • Korean bell is a macroscopically axi-symmetrical structure, but has a slight asymmetry due to complex patterns and casting irregularity. Small asymmetry separates one vibration mode into a mode pair with slight frequency difference. The mode pair interferes and creates a beat. The vivid beat with an appropriate period makes the bell sound magnificent and lively feeling. In this study, we propose a method to make the vivid beat using artificial dumshoi. This method creates the vivid beat by designing artificial dumshoi that overwhelms the bell asymmetry. To this end, the asymmetry of Korean bell is quantified by analyzing the beat period data of a number of Korean bells cast in modern times. Based on the measured beat period data, the magnitude of asymmetry is quantified using an equivalent bell model and artificial dumshoi is applied. The movement of mode pair by dumshoi is predicted through finite element analysis. Finally, a design example of the artificial dumshoi for clear beat is introduced.

A Study on the Daily Inspection Optimization of the Rolling Stocks (철도차량 일상검수 최적화에 관한 연구)

  • Kang, Byoung-Soo;Lee, Kang-In
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.7 no.4
    • /
    • pp.41-47
    • /
    • 2012
  • Railroad rolling stock has long service life and a lot of maintenance cost running on rail by wear and vibration. And it is very important to get optimization of maintenance. This paper want to analyze rolling stock maintenance situation of KORAIL and find out its improvement methods. Especially, the purpose of this paper is to adopt the most effective maintenance period and methods to daily inspection which needs many maintenance manpower in rolling stock. Rolling stock has self-diagnosis function using computer system and the quality of rolling stock has much improved these days but current daily inspection repeat for short period routinely and it is very ineffective. Therefore, the paper adopt improved daily inspection period reflecting the characteristics of rolling stock, and want to secure reliability of rolling stock and minimize maintenance cost.

  • PDF

A study on the improvement of the protective shield construction method and explosion-proof tube performance for tunnel blasting (터널 발파에 대한 방호쉴드 공법 및 방폭튜브 성능 개선 연구)

  • Sang-Hwan Kim;Soo-Jin Lee;Jung-Nam Kwon;Dong-gyun Yoo;Yong-Woo Kim;Kwang-Eun Cho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.285-303
    • /
    • 2023
  • Interest in building underground spaces is increasing for the creation of downtown infrastructure and efficient space utilization. A representative method of utilizing underground space is a tunnel, and in addition to road tunnels, the construction of utility tunnels such as power conduits and utility conduits is gradually increasing. The current basic tunnel construction method can be divided into NATM (New Austrian Tunnelling Method) and TBM (Tunnel Boring Machine). The NATM is a reliable method, but it is accompanied by vibration and noise due to blasting. In the case of the TBM excavation method, there are disadvantages in terms of construction period and construction cost, but it is possible to improve economic feasibility by introducing appropriate complementary methods. In this study, a blasting method was develop using the NATM after TBM pre-excavation using the protective shield method. This is a method that compensates for the disadvantages of each tunnel construction method, and is expected to reduce construction costs, blasting vibration, and noise. In order to review the performance of the developed method, an experiment was conducted to evaluate the performance of explosion-proof tube to which a protective shield scale model was applied, and the impact of blasting vibration of the protective shield method was analyzed.

A Study on the Test Construction Evaluation and Noise and Vibration Characteristics of Wireless Low-Floored Trams Trackway (무가선 저상트램 노면선로의 시험시공 평가와 소음·진동 특성연구)

  • Jeong, Young Do;An, Dong Geun;Jun, Jin Taek;Jeong, Woo Tae;Lee, Su Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.143-154
    • /
    • 2012
  • The wireless low-floored tram is an innovative transportation system which is environment-friendly and highly energy-efficient. In addition, the system has various advantages such as low construction cost, improvement of urban landscape, revitalization of surrounding commercial area, elevated convenience for passengers, etc. Therefore, more than ten local governments have proposed tram construction projects in Korea. Accordingly, many research and development projects are ongoing funded by government including the developments of tram vehicle, tram trackway, signal system, etc. The embedded rail system are commonly used in order to provide leveled roadway surface in urban area. It is effective to reduce the noise and vibration, caused at the interface between the wheel and track, to minimize the construction period, and to lower the maintenance cost. This paper investigated the design and construction processes for tram trackway and figured out the constructability for the test track with embedded rail system for the first time in Korea. The performance to reduce the noise and vibration were quantitatively measured in the test track with embedded rail system. In addition, the results were compared to the ones for track with conventional rail system.