• 제목/요약/키워드: The optimum support

검색결과 386건 처리시간 0.026초

라플라스 신호원에 대한 최소평균제곱오차 홑 양자기의 지지역에 관하여 (On the Support of Minimum Mean-Square Error Scalar Quantizers for a Laplacian Source)

  • 김성민;나상신
    • 한국통신학회논문지
    • /
    • 제31권10C호
    • /
    • pp.991-999
    • /
    • 2006
  • 이 논문은 라플라스 밀도 함수에 대한 최적 흩 양자기의 지지역의 증가는 양자점의 개수와 대수적인 관계가 있음을 보여준다. 구체적으로, 분산이 1인 라플라스 밀도함수에 대해서 양자정의 개수 N이 증가할 때 최적 양자기의 경계값에 의해 결정되는 지지역과 $\frac 3{\sqrt{2}}1n\frac N 2$의 비율이 1로 수렴함을 보여준다. 또한 극한 상한값을 유도하여 최적 지지역의 로그적 증가가 그 값을 초과하지 않음을 보였다. 이 결과들로부터 이전부터 경험적으로 연구되어 온 최적 지지역의 로그 증가를 확인 할 수 있다.

소형선박용 Azimuth 추진장치의 Steering Support Flange의 구조적 최적설계 및 동적거동에 관한 연구 (Structural Optimum Design and Dynamic Behavior Analysis of Steering Support Flange for Azimuth Thruster)

  • 손정대;최원호;정용길;최병근
    • 동력기계공학회지
    • /
    • 제11권1호
    • /
    • pp.33-38
    • /
    • 2007
  • Recent, The propeller had high performance according as high performance of small ship. So, We has the development for azimuth thrusters. This Paper has structure improvement of steering support flange in azimuth thrusters. Steering support flange is very important part. because, Steering support flange supports all weight of azimuth thrusters. We has static & dynamic analysis of Steering support flange, and we discover the very safety. So, We has optimum design for the cost reduction. The first method of optimum design, We has the thickness reduce to 30mm from 5mm. Next method of optimum design, We had added stiffener. And we has the structure & dynamic behavior analysis. We had to dynamic behavior analysis. The first, We had to modal analysis. The result of 1st-modal analysis is that original model had to 76.48hz and new model had to 200.9hz. The second, We had to harmonic analysis. The result, We gave the thrust power to steering support flange. and We had to frequency analysis to $0{\sim}500hz$. The result, Deflection ration reduce to 16.64.

  • PDF

사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구 (Study of the non-linearity of cable damper to enhance damping performance of stay cable)

  • 서주원;고현무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.147-156
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigate the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a energy loss ratio of cable potential, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, it is assumed to exist three kinds of multi-mode patterns such as ambient vibration, support excitation and rain-win induced vibration. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5. In case of support excitation or rain-wind induced vibration is between 0.5 and 1.0. In this study, the effects of cable sag and inclination angle are included in the asymptotic design equation of damped cable structures.

  • PDF

사장교 케이블의 감쇠성능 향상을 위한 댐퍼의 비선형성 연구 (Study of the Non-linearity of Cable Damper to Enhance Damping Performance of Stay Cable)

  • 서주원;고현무
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.785-796
    • /
    • 2007
  • This study offers a design procedure of optimum cable damper for multi-mode vibration control with nonlinear damper and also investigates the relation between mode and amplitude dependency. The proposed multi-mode damping index, which is defined as a potential energy loss ratio of cable vibration, is a main component of optimization problem of optimum nonlinear damper. In order to include the amplitude dependency of nonlinear damper, three types of multi-mode patterns such as ambient vibration, support excitation and rain-wind induced vibration are assumed. The optimum damper exponent depends on amplitude patterns. In case of ambient vibration, optimum factor is less than 0.5 and in case of support excitation or rain-wind induced vibration it is between 0.5 and 1.0.

경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구 (Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock)

  • 김영근;장정범;정한중
    • 터널과지하공간
    • /
    • 제6권3호
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

A Feasible Approximation to Optimum Decision Support System for Multidimensional Cases through a Modular Decomposition

  • Vrana, Ivan;Aly, Shady
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.249-254
    • /
    • 2009
  • The today's decision making tasks in globalized business and manufacturing become more complex, and ill-defined, and typically multiaspect or multi-discipline due to many influencing factors. The requirement of obtaining fast and reliable decision solutions further complicates the task. Intelligent decision support system (DSS) currently exhibit wide spread applications in business and manufacturing because of its ability to treat ill-structuredness and vagueness associated with complex decision making problems. For multi-dimensional decision problems, generally an optimum single DSS can be developed. However, with an increasing number of influencing dimensions, increasing number of their factors and relationships, complexity of such a system exponentially grows. As a result, software development and maintenance of an optimum DSS becomes cumbersome and is often practically unfeasible for real situations. This paper presents a technically feasible approximation of an optimum DSS through decreasing its complexity by a modular structure. It consists of multiple DSSs, each of which contains the homogenous knowledge's, decision making tools and possibly expertise's pertaining to a certain decision making dimension. Simple, efficient and practical integration mechanism is introduced for integrating the individual DSSs within the proposed overall DSS architecture.

해상풍력발전기 자켓 지지구조물의 최적설계 및 신뢰성해석 (Design Optimization and Reliability Analysis of Jacket Support Structure for 5-MW Offshore Wind Turbine)

  • 이지현;김수영;김명현;신성철;이연승
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.218-226
    • /
    • 2014
  • Since the support structure of an offshore wind turbine has to withstand severe environmental loads such as wind, wave, and seismic loads during its entire service life, the need for a robust and reliable design increases, along with the need for a cost effective design. In addition, a robust and reliable support structure contributes to the high availability of a wind turbine and low maintenance costs. From this point of view, this paper presents a design process that includes design optimization and reliability analysis. First, the jacket structure of the NREL 5-MW offshore wind turbine is optimized to minimize the weight and stresses, while satisfying the design requirements. Second, the reliability of the optimum design is evaluated and compared with that of the initial design. Although the present study results in a new optimum shape for a jacket support structure with reduced weight and increased reliability, the authors suggest that the optimum design has to be accompanied by a reliability analysis during the design process, as well as reliability based design optimization if needed.

유전알고리즘과 Random Tabu 탐색법을 조합한 최적화 알고리즘에 의한 배관지지대의 최적배치 (Optimum Allocation of Pipe Support Using Combined Optimization Algorithm by Genetic Algorithm and Random Tabu Search Method)

  • 양보석;최병근;전상범;김동조
    • 한국지능시스템학회논문지
    • /
    • 제8권3호
    • /
    • pp.71-79
    • /
    • 1998
  • 본 논문은 유전알고리즘과 random tabu 탐색법을 조합한 새로운 최적화 알고리즘을 제안한다. 유전알고리즘과 전역적인 최적해에 대한 탐색능력이 우수하고, random tabu 탐색법은 최적해에의 수렴속도가 매우 빠른 알고리즘이다. 본 논문에서는 이 두 알고리즘의 장점을 이용해서 수렴정도와 수렴속도가 더욱 향상된 최적알고리즘을 제안하여 알고리즘의 수렴성능을 조사하고, 실제 최적화문제로서 지진응답을 최소로 하기위한 배관지지대의 최적배치문제에 적용하여 기존의 방법과 비교를 통하여 유용성을 검토하였다.

  • PDF

Surrogate Model Based Approximate Optimization of Passive Type Deck Support Frame for Offshore Plant Float-over Installation

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • 한국해양공학회지
    • /
    • 제35권2호
    • /
    • pp.131-140
    • /
    • 2021
  • The paper deals with comparative study of various surrogate models based approximate optimization in the structural design of the passive type deck support frame under design load conditions. The passive type deck support frame was devised to facilitate both transportation and installation of 20,000 ton class topside. Structural analysis was performed using the finite element method to evaluate the strength performance of the passive type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions. The optimum design problem based on surrogate model was formulated such that thickness sizing variables of main structure members were determined by minimizing the weight of the passive type deck support frame subject to the strength performance constraints. The surrogate models used in the approximate optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. In the context of numerical performances, the solution results from approximate optimization were compared to actual non-approximate optimization. The response surface method among the surrogate models used in the approximate optimization showed the most appropriate optimum design results for the structure design of the passive type deck support frame.

Estimation of Unknown Parameters in Optimum Allocation

  • Park, Hyeonah;Park, Seunghwan;Na, Seongryong
    • Communications for Statistical Applications and Methods
    • /
    • 제20권2호
    • /
    • pp.137-145
    • /
    • 2013
  • The use of pooled standard deviation can reduce the efficiency loss in optimum allocation when strata standard deviations are estimated and several of them are equal. Also shown is that the pooled standard deviation is useful in optimum allocation under a multivariate setting. In addition to theoretical development, we provide the result of simulation study to support the theory.