• Title/Summary/Keyword: The numerical method

Search Result 18,622, Processing Time 0.046 seconds

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

Structural Stability Evaluation for Special Vehicle Slewing Bearing using Finite Element Analysis (유한요소해석을 통한 특수차량용 선회베어링의 구조 안전성 평가)

  • Seo, Hyun-Soo;Lee, Ho-Jun;An, Tae-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.511-519
    • /
    • 2021
  • Slewing bearing is applied to the transmission of rotational power of the body and turret in a special vehicle for anti-aircraft weapons that overcomes the enemy flight system approaching at low altitudes with rapid response fire. When the turret load and impact load generated when shooting are combined in performing the combat mission of a special vehicle, structural stability must be secured to achieve a successful function. Among the components of the slewing bearing, the stability of the components against the complex loads acting by the turret drive and shooting was evaluated by considering the shape and material characteristics of the ring-gear, roller, and wire-race. As a research method for stability evaluation, based on engineering theory, the strength characteristics of the components were examined by numerical calculations. Finite element analysis was performed on components using the ANSYS analysis program. The results of theoretical analysis and the results of finite element analysis were very similar. A structural stability evaluation for the slewing bearing, which was performed mainly on the analysis, confirmed that the design strength of the slewing bearing determined in the preliminary design in the early stage of localization development was sufficient.

Method of the Laboratory Wave Generation for Two Dimensional Hydraulic Model Experiment in the Coastal Engineering Fields: Case of Random Waves (해안공학분야에서 2차원 수리모형실험을 위한 실험파 설정방법: 불규칙파 대상)

  • Lee, Jong-In;Bae, Il Rho;Kim, Young-Taek
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.383-390
    • /
    • 2021
  • The experiments in coastal engineering are very complex and a lot of components should be concerned. The experience has an important role in the successful execution. Hydraulic model experiments have been improved with the development of the wave generator and the advanced measuring apparatus. The hydraulic experiments have the advantage, that is, the stability of coastal structures and the hydraulic characteristics could be observed more intuitively rather than the numerical modelings. However, different experimental results can be drawn depending on the model scale, facilities, apparatus, and experimenters. In this study, two-dimensional hydraulic experiments were performed to suggest the guide of the test wave(random wave) generation, which is the most basic and important factor for the model test. The techniques for generating the random waves with frequency energy spectrum and the range for the incident wave height [(HS)M/(HS)T = 1~1.05] were suggested. The proposed guide for the test wave generation will contribute to enhancing the reliability of the experimental results in coastal engineering.

The Effect of Hydraulic Efficiency on the Design Variables of an Overtopping Wave Energy Converter (월파수류형 파력발전구조물의 상부 사면 설계변수에 따른 수력학적 효율 영향 연구)

  • An, Sung-Hwan;Kim, Geun-Gon;Lee, Jong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.168-174
    • /
    • 2022
  • In a wave power generation system, the overtopping system is known as an overtopping wave energy converter (OWEC). The performance of an OWEC is affected by wave characteristics such as height and period because its power generation system is sensitive to those characteristics; these, as well as wave direction, depend on the sea. As these characteristics vary, it is hard for the OWEC to produce power in a stable manner. Therefore, it is necessary to find an appropriate shape for an OWEC, according to the characteristics of the sea it is in. This research verified the effect of the design of the OWEC ramp on the hydraulic efficiency using the smoothed particle hydrodynamics (SPH) particle method. A total of 10 models were designed and used in simulations performed by selecting the design parameters of the ramp and changing the attack angle based on those parameters. The hydraulic efficiency was calculated based on the rate of discharged water obtained from the analysis result. The effect of each variable on the overtopping performance according to the shape of the ramp was then confirmed. In this study, we present suggestions for determining the direction for an appropriately shaped OWEC ramp, based on a specific sea area.

Stochastic investigation on three-dimensional diffusion of chloride ions in concrete

  • Ye Tian;Yifei Zhu;Guoyi Zhang;Zhonggou Chen;Huiping Feng;Nanguo Jin;Xianyu Jin;Hongxiao Wu;Yinzhe Shao;Yu Liu;Dongming Yan;Zheng Zhou;Shenshan Wang;Zhiqiang Zhang
    • Computers and Concrete
    • /
    • v.32 no.3
    • /
    • pp.247-261
    • /
    • 2023
  • Due to the non-uniform distribution of meso-structure, the diffusion of chloride ions in concrete show the characteristics of characteristics of randomness and fuzziness, which leads to the non-uniform distribution of chloride ions and the non-uniform corrosion of steel rebar in concrete. This phenomenon is supposed as the main reason causing the uncertainty of the bearing capacity deterioration of reinforced concrete structures. In order to analyze and predict the durability of reinforced concrete structures under chloride environment, the random features of chloride ions transport in concrete were studied in this research from in situ meso-structure of concrete. Based on X-ray CT technology, the spatial distribution of coarse aggregates and pores were recognized and extracted from a cylinder concrete specimen. In considering the influence of ITZ, the in situ mesostructure of concrete specimen was reconstructed to conduct a numerical simulation on the diffusion of chloride ions in concrete, which was verified through electronic microprobe technology. Then a stochastic study was performed to investigate the distribution of chloride ions concentration in space and time. The research indicates that the influence of coarse aggregate on chloride ions diffusion is the synthetic action of tortuosity and ITZ effect. The spatial distribution of coarse aggregates and pores is the main reason leading to the non-uniform distribution of chloride ions both in spatial and time scale. The chloride ions concentration under a certain time and the time under a certain concentration both satisfy the Lognormal distribution, which are accepted by Kolmogorov-Smirnov test and Chi-square test. This research provides an efficient method for obtain mass stochastic data from limited but representative samples, which lays a solid foundation for the investigation on the service properties of reinforced concrete structures.

Determining the Size of a Hankel Matrix in Subspace System Identification for Estimating the Stiffness Matrix and Flexural Rigidities of a Shear Building (전단빌딩의 강성행렬 및 부재의 강성추정을 위한 부분공간 시스템 확인기법에서의 행켈행렬의 크기 결정)

  • Park, Seung-Keun;Park, Hyun Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.99-112
    • /
    • 2013
  • This paper presents a subspace system identification for estimating the stiffness matrix and flexural rigidities of a shear building. System matrices are estimated by LQ decomposition and singular value decomposition from an input-output Hankel matrix. The estimated system matrices are converted into a real coordinate through similarity transformation, and the stiffness matrix is estimated from the system matrices. The accuracy and the stability of an estimated stiffness matrix depend on the size of the associated Hankel matrix. The estimation error curve of the stiffness matrix is obtained with respect to the size of a Hankel matrix using a prior finite element model of a shear building. The sizes of the Hankel matrix, which are consistent with a target accuracy level, are chosen through this curve. Among these candidate sizes of the Hankel matrix, more proper one can be determined considering the computational cost of subspace identification. The stiffness matrix and flexural rigidities are estimated using the Hankel matrix with the candidate sizes. The validity of the proposed method is demonstrated through the numerical example of a five-story shear building model with and without damage.

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

Numerical Study on the Supply and Exhaust Port Size and Fire Management Method in the Semi-transverse Ventilation System for Road Tunnel (도로터널 반횡류환기시스템에서 급배기 포트개도 및 화재시 운영방안에 관한 수치해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.30 no.2
    • /
    • pp.68-74
    • /
    • 2016
  • In semi-transverse ventilation system applied for road tunnel, adjustment of the port opening ratio is an essential part for uniform airflow rate per unit length over the entire tunnel. However, it has not been considered decently throughout the design process and operating of the tunnel. Therefore, in this study, we developed a program for the calculation of the opening size ratio of supply or exhaust port in transverse ventilation system and carried out the research to present a management plan for the port. In supply duct system, the opening size of the port had a tendency to increase and then decrease later when it gradually becomes closer toward the bulkhead at the beginning of the duct the minimum opening degree is to appeared as 56%. In the exhaust system, port size is the smallest at the beginning of duct as 15%, has shown a tendency to increase towards the bulk head. As results of estimating the air flow rate for 300 m intervals, the exhaust flow rate in the center of tunnel appeared to be extremely low as 8.1% and 12.5% when port size is constant and is adjusted supply type. Thus, even if the normal ventilation efficiency is declines, yet it is highly recommend adjusting the port size in order to obtain a uniform flow rate at fire accidents.

Investigation of Various Radiation Proton Energy Effect on n, p Type Silicon by Positron Annihilation Method (양전자 소멸 측정법으로 양성자 조사에너지 변화에 대한 n, p형 실리콘 구조 특성)

  • Lee, Chong Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.22 no.6
    • /
    • pp.341-347
    • /
    • 2013
  • The n-type and p-type silicon samples were exposed by 40.0, 3.98 MeV proton beams ranging between 0 to $20.0{\times}10^{13}protons/cm^2$. Coincidence Doppler Broadening Positron Annihilation Spectroscopy (CDBPAS) were applied to study of defect characteristics of p type and n type silicon samples. In this investigation the numerical analysis of the spectra was employed to the determination of the shape parameter, S, defined as the ratio between the amount of counts in a central portion of the gamma spectrum and the total counts of whole gamma spectrum. The S-parameter values strongly depend on the irradiated proton beam that indicated the defects generate more, rather than the energy intensity. 40 MeV irradiated proton beam in the n-type silicon at $20.0{\times}10^{13}protons/cm^2$ was larger defects than 3.98 MeV irradiated proton beam. It was analysis between the proton irradiation beams and the proton intensities of the irradiation. Because of the Bragg peak, SRIM results shows mainly in a certain depth of the sample to form the defect by the proton irradiation, rather than the defects to appear for the entire sample.

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.