• Title/Summary/Keyword: The numerical method

Search Result 18,622, Processing Time 0.047 seconds

Simulation Techniques for Mid-Frequency Vibro-Acoustics Virtual Tools For Real Problems

  • Desmet, Wim;Pluymers, Bert;Atak, Onur;Bergen, Bart;Deckers, Elke;Huijssen, Koos;Van Genechten, Bert;Vergote, Karel;Vandepitte, Dirk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.49-49
    • /
    • 2010
  • The most commonly used numerical modelling techniques for acoustics and vibration are based on element based techniques, such as the nite element and boundary element method. Due to the huge computational eorts involved, the use of these deterministic techniques is practically restricted to low-frequency applications. For high-frequency modelling, probabilistic techniques such as SEA are well established. However, there is still a wide mid-frequency range, for which no adequate and mature prediction techniques are available. In this frequency range, the computational eorts of conventional element based techniques become prohibitively large, while the basic assumptions of the probabilistic techniques are not yet valid. In recent years, a vast amount of research has been initiated in a quest for an adequate solution for the current midfrequency problem. One family of research methods focuses on novel deterministic approaches with an enhanced convergence rate and computational eciency compared to the conventional element based methods in order to shift the practical frequency limitation towards the mid-frequency range. Amongst those techniques, a wave based prediction technique using an indirect Tretz approach is being developed at the K.U.Leuven - Noise and Vibration Research group. This paper starts with an outline of the major features of the mid-frequency modelling challenge and provides a short overview of the current research activities in response to this challenge. Next, the basic concepts of the wave based technique and its hybrid coupling with nite element schemes are described. Various validations on two- and threedimensional acoustic, elastic, poro-elastic and vibro-acoustic examples are given to illustrate the potential of the method and its benecial performance as compared to conventional element based methods. A closing part shares some views on the open issues and future research directions.

  • PDF

Field Analysis in the Ferrite Core at 100 kHz Band Magnetic Field (100 kHz 대역의 자계 환경내(內)에서의 페라이트 코어의 계(界) 해석)

  • Koo, Bon-Chul;Yoo, Jae-Sung;Kim, Mi-Ja;Gimm, Yoon-Myoung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.977-983
    • /
    • 2007
  • Recently, the number of systems which utilize wireless power transmission to a receiving module in a short distance is increasing. For efficient use of receiving space, coils are wound around the ferrite core to produce electromotive force(emf) in suppling power by wireless transmission. This paper analyzed the magnetic flux density distribution in the ferrite core in magnetic field environment which is uniformly oriented along to a single axis at 125kHz. For numerical analysis, Ansoft Maxwell which is applying the FEM(Finite Element Method) method was used. We studied the variations of the gathered magnetic fluxes to the changes of the relative permeabilities of the ferrite cores. Also we calculated the magnetic flux variation by shaving the ferrite core off for the groove of coil winding. Results showed that using a small ferrite core in magnetic field at 100kHz band can increase the amount of magnetic flux $3{\sim}4 times$ than without the core. The magnetic flux decreased 23% by shaving the core 0.5 mm on the periphery of 4.75 mm radius core with the relative permeability 800.

A Case Study on the Slope Collapse and Reinforcement Method of the Phyllite Slope (천매암 지역에서의 비탈면 붕괴 원인규명 및 보강대책 사례연구)

  • Cho, Younghun;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.8
    • /
    • pp.83-93
    • /
    • 2010
  • The purpose of this study is to present emergency rehabilitation, cause and the countermeasure of reinforcement about reinforced retaining wall and the slope collapse of the phyllite ground. The study area is broken easily because this area has rock mass discontinuity such as stratification, foliation, joint and fold. And this area consists of the ground where it happens easily to the failure of structure like reinforced retaining wall because of the phyllite ground sensitive to weathering. Counterweight fill in front of reinforced retaining wall was performed as emergency rehabilitation about displacement of reinforced retaining wall and the failure at the rear of slope on phyllite ground. After that, additional displacement didn't occur. Boring and geophysical exploration were launched to present emergency rehabilitation and develop the long-term method of reinforcement. This could grasp anticipated range of the failure section and identify internal and external factors of the cause of the slope collapse. Several methods of reinforcement were suggested by conducting the numerical analysis. When conducting design and construction of major structures at the ground which has complex discontinuities, the precise site investigation should be conducted. During construction, immediate action for over-displacement should be taken by performing the periodic measurement.

Numerical Study on the Effect of Reactor Internal Structure Geometry Treatment Method on the Prediction Accuracy for Scale-down APR+ Flow Distribution (원자로 내부 구조물 형상 처리 방법이 축소 APR+ 유동분포 예측 정확도에 미치는 영향에 관한 수치적 연구)

  • Lee, Gong Hee;Bang, Young Seok;Woo, Sweng Woong;Cheong, Ae Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.271-277
    • /
    • 2014
  • Internal structures, especially those located in the upstream of a reactor core, may have a significant influence on the core inlet flow rate distribution depending on both their shapes and the relative distance between the internal structures and the core inlet. In this study, to examine the effect of the reactor internal structure geometry treatment method on the prediction accuracy for the scale-down APR+ flow distribution, simulations with real geometry modeling were conducted using ANSYS CFX R.14, a commercial computational fluid dynamics software, and the predicted results were compared with those of the porous medium assumption. It was concluded that the core inlet flow distribution could be predicted more accurately by considering the real geometry of the internal structures located in the upstream of the core inlet. Therefore, if sufficient computational resources are available, an exact representation of these internal structures, for example, lower support structure bottom plate and ICI nozzle support plate, is needed for the accurate simulation of the reactor internal flow.

KrF 엑시머 레이저를 이용한 웨이퍼 스텝퍼의 제작 및 성능분석

  • 이종현;최부연;김도훈;장원익;이용일;이진효
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.15-21
    • /
    • 1993
  • This paper describes the design and development of a KrF excimer laser stepper and discusses the detailed system parameters and characterization data obtained from the performance test. We have developed a deep UV step-and-repeat system, operating at 248 nm, by retrofitting a commercial modules such as KrF excimer laser, precision wafer stage and fused silica illumination and 5X projection optics of numerical aperture 0.42. What we have developed, to the basic structure, are wafer alignment optics, reticle alignment system, autofocusing/leveling mechanisms and environment chamber. Finally, all these subsystem were integrated under the control of microprocessor-based controllers and computer. The wafer alignment system comprises the OFF-AXIS and the TTL alignment. The OFF-AXIS alignment system was realized with two kinds of optics. One is the magnification system with the image processing technique and the other is He-Ne laser diffraction type system using the alignment grating on the wafer. 'The TTL alignment system employs a dual beam inteferometric method, which takes advantages of higher diffraction efficiency compared with other TTL type alignment systems. As the results, alignment accuracy for OFF-AXIS and TTL alignment system were obtained within 0.1 $\mu\textrm{m}$/ 3 $\sigma$ for the various substrate on the wafers. The wafer focusing and leveling system is modified version of the conventional systems using position sensitive detectors (PSD). This type of detection method showed focusing and leveling accuracies of about $\pm$ 0.1 $\mu\textrm{m}$ and $\pm$ 0.5 arcsec, respectively. From the CD measurement, we obtained 0.4 $\mu\textrm{m}$ resolution features over the full field with routine use, and 0.3 $\mu\textrm{m}$ resolution was attainable under more strict conditions.

  • PDF

Burn-back Analysis for Propellant Grains with Embedded Metal Wires (금속선이 삽입된 추진제 그레인의 Burn-back 해석)

  • Lee, Hyunseob;Oh, Jongyun;Yang, Heesung;Lee, Sunyoung;Khil, Taeock
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.12-19
    • /
    • 2022
  • Propellant grains with embedded metal wires have been used for enhancement of burning rate while maintaining high loading density. For the performance design of a solid rocket motor using propellant grain with embedded metal wires, burn-back analysis is required according to number, location, arrangement angle of metal wires, and augmentation ratio of the propellant burning rate near a wire region. In this study, a numerical method to quickly calculate a burning surface area was developed in response to the design change of the propellant grain with embedded metal wires. The burning surface area derived from the developed method was compared with the results of a CAD program. Error rate decreased as the radial size of the grid decreased. Analysis for characteristics of burning surface area was performed according to the number and location of metal wires, the initial and final phases were shortened and the steady-state phase was increased when the number of metal wires increased. When arranging the metal wires at different radii, the burning surface area rapidly increased in the initial phase and sharply decreased in the final phase compared to the case where the metal wires were disposed in the same radius.

PROCESSING STRATEGY FOR NEAR REAL TIME GPS PRECIPITABLE WATER VAPOR RETRIEVAL (준 실시간 GPS 가강수량 생성을 위한 자료처리 전략)

  • Baek, Jeong-Ho;Lee, Jae-Won;Choi, Byung-Kyu;Cho, Jung-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.24 no.4
    • /
    • pp.275-284
    • /
    • 2007
  • For the application to the numerical weather prediction (NWP) in active service, it is necessary to ensure that the GPS precipitable water vapor (PWV) data has less than one hour latency and three millimeter accuracy. The comparison and the verification between the daily products from GPS measurement by using the IGS final ephemeris and the conventional meteorological observation has been done in domestic researches. In case of using IGS final ephemeris, GPS measurements can be only post processed in daily basis in three weeks after the observation. Thus this method cannot be applied to any near real-time data processing. In this paper, a GPS data processing method to produce the PWV output with three mm accuracy and one hour latency for the data assimilation in NWP has been planned. For our new data processing strategy, IGS ultra-rapid ephemeris and the sliding window technique are applied. And the results from the new strategy has been verified. The GPS measurements during the first 10 days of January, April, July and October were processed. The results from the observations at Sokcho, where the GPS and radiosonde were collocated, were compared. As the results, a data processing strategy with 0.8 mm of mean bias and 1.7 mm of standard deviation in three minutes forty-three seconds has been established.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Shear behavior at the interface between particle and non-crushing surface by using PFC (PFC를 이용한 입자와 비파쇄 평면과의 접촉면에서의 전단 거동)

  • Kim, Eun-Kyung;Lee, Jeong-Hark;Lee, Seok-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.293-308
    • /
    • 2012
  • The shear behavior at the particle/surface interface such as rock joint can determine the mechanical behavior of whole structure. Therefore, a fundamental understanding of the mechanisms governing its behavior and accurately estimation of the interface strength is essential. In this paper, PFC, a numerical analysis program of discrete element method was used to investigate the effects of the surface roughness on interface strength. The surface roughness was characterized by smooth, intermediate, and rough surface, respectively. In order to investigate the effects of particle shape and crushing on particle/surface interface behavior, one ball, clump, and cluster models were created and their results were compared. The shape of particle was characterized by circle, triangle, square, and rectangle, respectively. The results showed that as the surface roughness increases, interface strength and friction angle increase and the void ratio increases. The one ball model with smooth surface shows lower interface strength and friction angle than the clump model with irregular surface. In addition, a cluster model has less interface strength and friction angle than the clump model. The failure envelope of the cluster model shows non-linear characteristic. From these findings, it is verified that the surface roughness and particle shape effect on the particle/surface interface shear behavior.

Statistical Analysis of Focus Adjustment Method for a Floating Imaging System with Symmetric Error Factors (대칭형 공차를 갖는 플로팅 광학계의 상면 변화 보정 방법에 대한 통계적 해석)

  • Ryu, Jae Myung;Kim, Yong Su;Jo, Jae Heung;Kang, Geon Mo;Lee, Hae Jin;Lee, Hyuck Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.5
    • /
    • pp.189-196
    • /
    • 2012
  • A floating optical system is a system that moves more than 2 groups to focus at the camera lens. At the camera optics, the floating system that is mainly used is an optical system such as a macro lens which changes magnification very much. When the floating system is assembled and fabricated in the factory, there are differences between the image plane of the sensor and the focal plane of the infinity or macro state. Therefore, in a considerable proportion of cases, the focus adjustment to minimize the difference of BWD(Back Working Distance) is carried out in the process of manufacturing. In this paper, in order to decide the movement of each group in a floating system, we evaluated the rotation angle of CAM for the focus adjustment. We know that the maximum magnification of macro state is corrected by this numerical method for the focus adjustment, too. We investigated the limit of CAM rotation angle of the system by using statistical analysis for CAM rotation angle, which uses the focus adjustment of the floating system with symmetric error factors.