• Title/Summary/Keyword: The mobile robot

Search Result 2,533, Processing Time 0.044 seconds

Experimental Investigation on Bi-directional Guidance Control Between an Underwater Mobile Robot and Laser Pointer (레이저 위치 지시기와 이동 로봇간의 상호유도제어의 실험적 고찰)

  • 이재철;김재희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.268-268
    • /
    • 2000
  • In the inspection of the reactor pressure vessel using an underwater mobile robot, we developed a new bi-directional guidance control scheme between an underwater mobile robot and a laser pointer. We imposed fanning to the inclinometer embedded in the mobile robot to improve its transient response, and used heuristic control scheme to reduce accidents when the laser pointer losts the mobile robot. We implemented these algorithms to our reactor vessel inspect ion system and performed a series of experiments.

  • PDF

Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization (비선형 최적화 방법을 이용한 이동로봇의 주행)

  • Kim, Gon-Woo;Cha, Young-Youp
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1404-1409
    • /
    • 2011
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the pose error between the goal position and the position of a mobile robot. Using the nonlinear least squares optimization method, the optimal speeds of the left and right wheels can be found as the solution of the optimization problem. Especially, the rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot using the Jacobian derived from the kinematic model. It will be very useful for applying to the mobile robot navigation. The performance was evaluated using the simulation.

Iot Based Vision and Remote Control a Compact Mobile Robot System (IoT 기반의 비전 및 원격제어 소형 이동 로봇 시스템)

  • Jeon, Yun Chae;Choi, Hyeri;Yoon, Ki-Cheol;Kim, Gwang Gi
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.267-273
    • /
    • 2021
  • Recently, the small-size mobile robots with remote-control are rapidly growth which market of mobile is increased in the world. Especially, the smart-phones are widely used for interface device in the small size of a mobile robot. The research goal is control system design which is applied to miniaturization of a mobile robot using smart-phone and it can be confirmed performance for designed system. Meanwhile, the fabrication of mini-mobile robot can also be remote-control operation through the WIFI performance of a smart-phone. The smart-phone is used to remote-control for robot operation which control data transmit to robot via the WIFI network. To drive the robot, we can observe by the smart-phone screen and it can easily adjust the robot drive condition and direction by smart-phone button. Consequentially, there was no malfunction and images were printed out well. However, in drive, because of blind spot, robot was bumped into obstacle. Therefore, the additional test is necessary to sensor for blind spot which sensor can be equipment to mobile robot. In addition, the experiment with robot object recognition is needed.

Absolute Positioning System of Mobile Robot using Light Navigation Path (광궤도를 이용한 이동로봇의 절대위치 보정 시스템)

  • 박용택;정효용;국금환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.141-147
    • /
    • 2003
  • This paper represents an absolute positioning system using a light navigation path for mobile robot. The absolute positioning system is composed of the projector unit which generates a laser beam using laser diode and mobile robot with the optical detector which has some optical sensors. The projector unit is fixed over the navigating plane of mobile robot to generate the light navigation path, and the optical detector located upper part of mobile robot detects the generated laser beam from the projector. The navigation of mobile robot is controlled by the micro-processor which compares the detected present position from the detector with the previously programmed navigation path. And experimental results show that our sensor system can be used for the absolute positioning system of the mobile robot.

A Study on Posture Control Algorithm of Performing Consecutive Task for Mobile Manipulator (이동매니퓰레이터의 연속작업 수행을 위한 자세 제어 알고리즘에 관한 연구)

  • Kim, Jong-Iek;Rhyu, Kyeong-Taek;Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • One of the most important features of the Mobile Manipulator is redundant freedom. Using it's redundant freedom, a Mobile Manipulator can move in various modes, and perform dexterous motions. In this paper, to improve robot job performance, two robots -mobile robot, task robot- are joined together to perform a job, we studied the optimal position and posture of a Mobile Manipulator to achieve a minimum of movement of each robot joint. Kinematics of mobile robot and task robot is solved. Using the mobility of a Mobile robot, the weight vector of robots is determined. Using the Gradient method, global motion trajectory is minimized, so the job which the Mobile Manipulator performs is optimized. The proposed algorithm is verified with PURL-II which is Mobile Manipulator combined Mobile robot and task robot, and the results are discussed.

  • PDF

A Control System for Synchronizing Attitude between an Android Smartphone and a Mobile Robot (안드로이드 스마트폰과 이동 로봇의 자세 동기화를 위한 제어 시스템)

  • Kim, Min J.;Bae, Seol B.;Shin, Dong H.;Joo, Moon G.
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.5
    • /
    • pp.277-283
    • /
    • 2014
  • In this paper, we propose a control system for synchronizing attitude between an Android smartphone and a mobile robot. The control system is comprised of a smartphone and a mobile robot. The smartphone transports its attitude to the mobile robot and receives the attitude of mobile robot through bluetooth communication. Further, the smartphone displays the mobile robot on the screen by using embedded camera, which can be used as a pseudo augmented reality. Comparing the received attitude data from smartphone, the mobile robot measures its attitude by an AHRS(attitude heading reference system) and controls its attitude. Experiments show that the synchronization performance of the proposed system is maintained in the error range of $1^{\circ}$.

The Trace Algorithm of Mobile Robot Using Neural Network (신경 회로망을 이용한 Mobile Robot의 추종 알고리즘)

  • 남선진;김성현;김성주;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.267-270
    • /
    • 2001
  • In this paper, we propose the self-autonomous algorithm for mobile robot system. The proposed mobile robot system which is teamed by learning with the neural networks can trace the target at the same distances. The mobile robot can evaluate the distance between robot and target with ultrasonic sensors. By teaming the setup distance, current distance and command velocity, the robot can do intelligent self-autonomous drive. We use the neural network and back-propagation algorithm as a tool of learning. As a result, we confirm the ability of tracing the target with proposed mobile robot.

  • PDF

Robust Velocity Estimation of an Omnidirectional Mobile Robot Using a Polygonal Array of Optical Mice

  • Kim, Sung-Bok;Lee, Sang-Hyup
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.713-721
    • /
    • 2008
  • This paper presents the robust velocity estimation of an omnidirectional mobile robot using a polygonal array of optical mice that are installed at the bottom of the mobile robot. First, the velocity kinematics from a mobile robot to an array of optical mice is derived as an overdetermined linear system. The least squares velocity estimate of a mobile robot is then obtained, which becomes the same as the simple average for a regular polygonal arrangement of optical mice. Next, several practical issues that need be addressed for the use of the least squares mobile robot velocity estimation using optical mice are investigated, which include measurement noises, partial malfunctions, and imperfect installation. Finally, experimental results with different number of optical mice and under different floor surface conditions are given to demonstrate the validity and performance of the proposed least squares mobile robot velocity estimation method.

Localization of Mobile Robot Using Color Landmark mounted on Ceiling (천장 부착 컬러 표식을 이용한 이동로봇의 자기위치추정)

  • Oh, Jong-Kyu;Lee, Chan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.91-94
    • /
    • 2001
  • In this paper, we proposed localization method of mobile robot using color landmark mounted on ceiling. This work is composed 2 parts : landmark recognition part which finds the position of multiple landmarks in image and identifies them and absolute position estimation part which estimates the location and orientation of mobile robot in indoor environment. In landmark recognition part, mobile robot detects artificial color landmarks using simple histogram intersection method in rg color space which is insensitive to the change of illumination. Then absolute position estimation part calculates relative position of the mobile robot to the detected landmarks. For the verification of proposed algorithm, ceiling-orientated camera was installed on a mobile robot and performance of localization was examined by designed artificial color landmarks. As the result of test, mobile robot could achieve the reliable landmark detection and accurately estimate the position of mobile robot in indoor environment.

  • PDF

Development of a Pendulum-driven Type Spherical Mobile Robot (진자 구동 방식의 구형 이동 로봇 개발)

  • Kim, Ja-Young;Kwon, Hyok-Jo;Kim, Dae-Hyun;Choi, Hee-Byoung;Lee, Ji-Hong
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.124-126
    • /
    • 2009
  • In this paper a pendulum-driven type spherical mobile robot is introduced. Many researchers have been studied about a spherical mobile robot. we developed a pendulum-driven type spherical mobile robot and analyzed mechanism of pendulum motion. Mechanism of pendulum motion applied to the robot. Consequently, we could verify the motion of the robot as motion of pendulum.

  • PDF