• Title/Summary/Keyword: The length-diameter ratio L/D

Search Result 123, Processing Time 0.023 seconds

Effects of Length-to-Diameter Ratio on the Three-Dimensional Flow Within an Injection Hole Normally Oriented to the Mainflow (분사구멍의 길이가 수직 분사구멍 내부에서의 3차원 유동에 미치는 영향)

  • Lee, Sang Woo;Joo, Seong Kuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1255-1266
    • /
    • 1998
  • Effects of a length-to-diameter ratio, L/D, on the three-dimensional flow and aerodynamic loss within an injection hole, which is normally oriented to the mainflow, have been investigated by using a straight five-hole probe. The length-to-diameter ratio of the injection hole is varied to be 0.5 and 2.0 for blowing ratios of 0.5, 1.0 and 2.0. Regardless of the blowing ratio, flows within the hole and at the jet exit are strongly affected by the length-to-diameter ratio. In the case of L/D=0.5, the inside flow is considerably influenced by the mainflow, and the exit flow variation is found to be the greatest. The aerodynamic loss in this case is usually attributed to jet -mainflow interactions. In the case of L/D=2.0, the flow separation and reattachment in the inlet region are completely separated from the complicated exit flow, and the aerodynamic-loss production is mainly due to the inlet flow separation.

Effects of Nozzle Length-diameter Ratio on Internal and External Flow Characteristics of Biodiesel Fuel (노즐 형상비가 바이오디젤 연료의 노즐 내부 및 외부 유동 특성에 미치는 영향)

  • Park, Su-Han;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.94-100
    • /
    • 2007
  • The purpose of this work is to investigate the effect of properties of diesel and biodiesel fuels on the nozzle cavitation and the effect of the length/diameter(L/D) ratio on internal and external flow pattern of nozzle at the various injection conditions. In order to study the effect of the L/D ratio on the nozzle cavitation characteristics of diesel and biodiesel, the characteristics of cavitation flow in the nozzle are visualized and analyzed at the injection pressure of 0.1 MPa to 0.7 MPa by using the visualized images. It was founded that the cavitation was formed in the nozzle orifice at the low injection pressure and the breakup of the issuing liquid jet was promoted at the low L/D ratio. When the L/D ratio decrease, cavitation beginning and growth were affect by cavitation number and Reynolds number.

Effect of Nozzle Orifice Shape and Nozzle Length-to-Diameter Ratio on Internal and External Flow Characteristics of Diesel and Biodiesel Fuel (노즐 오리피스 형상 및 형상비가 디젤과 바이오디젤 연료의 노즐 내부 및 외부 유동특성에 미치는 영향)

  • Park, Su-Han;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.3 s.258
    • /
    • pp.264-272
    • /
    • 2007
  • The aim of this study is to investigate the effects of nozzle orifice shapes and the nozzle length-to-diameter ratio(L/D) on the nozzle cavitation formation inside the orifice and the external flow pattern. The nozzle used in this work was tested the taper orifice nozzle and the rectangular orifice nozzle which was made from the transparent acrylic acid resin. For studying the effect of the nozzle L/D ratio, it was used to three L/D ratios of 3.33, 10, and 20. The cavitation flow of nozzle was visualized by using the ICCD camera and optical system. This work revealed that the flow rate and discharge coefficient($C_d$) of the taper orifice nozzle was larger than those of the rectangular orifice nozzle at the same injection pressure. The cavitation flow was observed in the nozzle orifice at the low injection pressure and the breakup of liquid jet was promoted as the L/D ratio is decreased. The cavitation of biodiesel fuel was formed at the lower injection pressure than that of diesel fuel because of higher viscosity and density.

Enlarge duct length optimization for suddenly expanded flows

  • Pathan, Khizar A.;Dabeer, Prakash S.;Khan, Sher A.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.3
    • /
    • pp.203-214
    • /
    • 2020
  • In many applications like the aircraft or the rockets/missiles, the flow from a nozzle needs to be expanded suddenly in an enlarged duct of larger diameter. The enlarged duct is provided after the nozzle to maximize the thrust created by the flow from the nozzle. When the fluid is suddenly expanded in an enlarged duct, the base pressure is generally lower than the atmospheric pressure, which results in base drag. The objective of this research work is to optimize the length to diameter (L/D) ratio of the enlarged duct using the CFD analysis in the flow field from the supersonic nozzle. The flow from the nozzle drained in an enlarged duct, the thrust, and the base pressure are studied. The Mach numbers for the study were 1.5, 2.0 and 2.5. The nozzle pressure ratios (NPR) of the study were 2, 5 and 8. The L/D ratios of the study were 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Based on the results, it is concluded that the L/D ratio should be increased to an optimum value to reattach the flow to an enlarged duct and to increase the thrust. The supersonic suddenly expanded flow field is wave dominant, and the results cannot be generalized. The optimized L/D ratios for various combinations of flow and geometrical parameters are given in the conclusion section.

A Study on Combustion Characteristics of Hybrid Rocket with the Variation of L/D ratio (하이브리드 로켓의 L/D 비 변화에 따른 연소특성 연구)

  • Kim Soo-jong;Kim Jin-kon;Lee Seung-chul;You Woo-jun;Lee Jung-pyo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.83-87
    • /
    • 2005
  • In this paper, the combustion characteristics of a hybrid propulsion system were studied with various L/D(length vs diameter) ratio of the single port type solid fuel. Experiments of L/D ratio change were performed for 2 cases with the fixed grain port diameter and fuel length respectively. For the First case, results show that there are no large variation for regression rates as the L/D ratio changes. And as the L/D ratio increases, the O/F ratio and thrust tends to increase. For the Second case, there are no large change for O/F ratio and thrust as L/D ratio changes. On the other hand, as the L/D ratio decreases, only the regression rate tends to increase.

  • PDF

A Study on Combustion Characteristics of Hybrid Rocket with the Variation of L/D Ratio (하이브리드 로켓의 L/D 비 변화에 따른 연소특성 연구)

  • Kim Soo-Jong;Kim Jin-Kon;Lee Seung-Chul;You Woo-Jun;Lee Jung-Pyo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.4
    • /
    • pp.31-38
    • /
    • 2005
  • In this paper, the combustion characteristics of a hybrid propulsion system were studied with various L/D(length vs diameter) ratio of the single po.1 type solid fuel. Experiments were performed for 2 cases with the fixed grain port diameter and fuel length respectively. For the first case, results show that there are no large variations for regression rates as the L/D ratio changes. And as the L/D ratio increases, the O/F ratio decreases and thrust, characteristic velocity tends to increase. For the second case, there is no large change for O/F ratio, thrust and characteristic velocity as L/D ratio changes. On the other hand, as the L/D ratio decreases, only the regression rate tends to increase. Experimentally, exponent n in $\dot{r}=a{G_0}^n$ was found about 0.5 and then the O/F ratio was shown nearly constant. In the experiment, PE and gas oxygen were used as a fuel and an oxidizer.

Study of dynamic mechanical behavior of aluminum 7075-T6 with respect to diameters and L/D ratios using Split Hopkinson Pressure Bar (SHPB)

  • Kim, Eunhye;Changani, Hossein
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.857-869
    • /
    • 2015
  • The aluminum 7075-T6 is known as an alloy widely used in aircraft structural applications, which does not exhibit strain rate sensitivity during dynamic compressive tests. Despite mechanical importance of the material, there is not enough attention to determine appropriate sample dimensions such as a sample diameter relative to the device bar diameter and sample length to diameter (L/D) ratio for dynamic tests and how these two parameters can change mechanical behaviors of the sample under dynamic loading condition. In this study, various samples which have different diameters of 31.8, 25.4, 15.9, and 9.5 mm and sample L/D ratios of 2.0, 1.5, 1.0, 0.5, and 0.25 were tested using Split Hopkinson Pressure Bar (SHPB), as this testing device is proper to characterize mechanical behaviors of solid materials at high strain rates. The mechanical behavior of this alloy was examined under ${\sim}200-5,500s^{-1}$ dynamic strain rate. Aluminum samples of 2.0, 1.5 and 1.0 of L/D ratios were well fitted into the stress-strain curve, Madison and Green's diagram, regardless of the sample diameters. Also, the 0.5 and 0.25 L/D ratio samples having the diameter of 31.8 and 25.4 mm followed the stress-strain curve. As results, larger samples (31.8 and 25.4 mm) in diameters followed the stress-strain curve regardless of the L/D ratios, whereas the 0.5 and 0.25 L/D ratios of small diameter sample (15.9 and 9.5 mm) did not follow the stress-strain diagram but significantly deviate from the diagram. Our results indicate that the L/D ratio is important determinant in stress-strain responses under the SHPB test when the sample diameter is small relative to the test bar diameter (31.8 mm), but when sample diameter is close to the bar diameter, L/D ratio does not significantly affect the stress-strain responses. This suggests that the areal mismatch (non-contact area of the testing bar) between the sample and the bar can misrepresent mechanical behaviors of the aluminum 7075-T6 at the dynamic loading condition.

Lateral Behavior Characteristics of Short Pile in Sands by Model Tests (모형실험에 의한 사질토 지반에서 단말뚝의 수평거동 특성)

  • Kim, Jin-Bok;Park, Jong-Un;Han, Dae-Hwan;Kwon, Oh-Kyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.366-376
    • /
    • 2008
  • The model tests of short pile with very small pile length/diameter(L/D) were performed in this paper. Varying the pile diameter, length, and the lateral loading point, the lateral resistance and behavior of very short pile were studied in this model tests. The experimental and analytical results are as follows. The lateral ultimate resistance of short pile in sands was the maximum at the point of h/L=0.75, regardless of pile length/diameter(L/D). As the pile diameter is larger, the lateral ultimate resistance of pile with L/D=1 decreases a little and the lateral resistance increases according to the ratio of pile length/diameter. As the lateral loads are acting on the pile, the displacement of pile head is maximum at the pile top of h/L=0, but minimum at the middle point of the pile. And if the loading point is under the middle of pile, the displacement of pile head occurs oposite in the loading direction, but its magnitude is very small.

  • PDF

Analysis of Plastic Hinge of Pile-Bent Structure with Varying Pile Diameters (단일형 현장타설말뚝의 소성힌지를 고려한 최적설계법 제안)

  • Ahn, Sang-Yong;Jeong, Sang-Seom;Kim, Jae-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.349-356
    • /
    • 2010
  • In this study, a new design method of pile bent structure considering plastic hinge was proposed on the basis of the beam-column model. Based on the analysis results, it is found that the positioning of plastic hinge on the pile bent structure was influenced by nonlinear behavior of material and p-$\Delta$ effect. Moreover, concrete cracking began to occur at the joint section between the pile and column in case of pile bent structure with different cross-sections. The plastic hinge can be developed on the pile bent structure when large displacement was occurred, and pile bent structures can be maintained well only if it is developed on the column part. Therefore, in this study, the optimized cross-section ratio between column and pile was analyzed to induce the plastic hinge at the joint section between the pile and column. Based on this, the optimized diameter ratio of pile and column can be obtained below the inflection point of the bi-linear curve depending on the relations between column-pile diameter ratio($D_c/D_p$) and normalized lateral cracking load ratio($F/F_{Dc=Dp}$). And through this study, it is founded that in-depth limit($L_{As}$=0.4%) normalized by the pile length($L_P$) are proportionally decreased as the pile length($L_P/D_P$) increases up to $L_P/D_P$=17.5, and beyond that in-depth limit converges to a constant value. Finally, it is found that the proposed limit depth by taking into account the minimum concrete-steel ratio would be more economical design of the pile bent structure.

  • PDF

Comparative Anatomy of Diffuse-Porous Woods Grown in Korea(II) -Characteristics by Habit and Phenology- (한국산(韓國産) 산공재(散孔材)의 해부학적(解剖學的) 특성(特性)에 관한 비교연구(比較硏究)(II) -Habit과 Phenology에 따른 특성(特性)-)

  • Chung, Youn-Jib;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • The frequency distribution diagrams of Korean diffuse-porous woods, 36 families, 75 genera, 145 species, 215 specimens in relation to habit and phenology were analyzed. As the habit character changes from shrub to tree, such quantitative features as vessel frequency, percentage of solitary vessels, length/diameter(L/D) ratio of vessel element decreased but tangential vessel diameter, fiber length/vessel element length(F/V) ratio increased. Qualitative features such as helical vessel wall thickening, diffuse distribution of longitudinal parenchyma, heterogeneous ray composition decreased, while alternate intervessel pits, libriform wood fiber, simple perforations increase. As the phenology character changes from evergreen to deciduous species, such quantitative features as percentage of solitary vessels, vessel element length and L/D ratio decreased but tangential vessel diameter, F/V ratio increased. Diffuse distribution of longitudinal parenchyma, heterogeneous ray composition, and crystals in qualitative features decreased, while alternate intervessel pits, libriform wood fiber, simple perforation of vessel element, ray width and ray height increased.

  • PDF