• Title/Summary/Keyword: The last Sea

Search Result 400, Processing Time 0.022 seconds

Paleoceanographic Records from the Northern Shelf of the East China Sea since the Last Glacial Maximum

  • Li, Bao-Hua;Park, Byong-Kwon;Kim, Dong-Seon
    • Journal of the korean society of oceanography
    • /
    • v.34 no.3
    • /
    • pp.151-166
    • /
    • 1999
  • Both benthic and planktonic foraminifera from Core 97-02 obtained in the northern East China Sea are quantitatively analyzed for reconstructing the paleocenography of late Quaternary. Since the earliest time of the core sediment (last not older than 18000 yr B.P.), the paleo-water depth has changed from less than 20 m to near 100 m at present, which is reflected by the benthic foraminiferal assemblages: before 14000 yr B.P., the water depth was shallower than 20 m; from 14000 to 7500 yr B.P., water depth was 20-50 m; and after 7500 yr B.P., water depth was 50-100 m. The foraminiferal fauna also disclose the water mass history: during the last glacial maximum, the water that dominated the study area might be the coastal water; at the end of the last glacial maximum(14000-9500 yr B.P.), the Yellow Sea Cold Water mostly affected this area; then it gave way to the Yellow Sea Warm Current after 9500 yr B.P.; and finally, the warm water has dominated this area since 9500 yr B.P. because of the westward shift and enhancement of the Kuroshio Current.

  • PDF

Development of a Deep-sea ROV, Hemire and its sea trial (심해 무인잠수정 해미래와 실해역 탐사)

  • Choi, H.T.;Lee, P.M.;Lee, C.M.;Jun, B.H.;Li, J.H.;Kim, K.H.;Ryu, S.C.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.3
    • /
    • pp.70-76
    • /
    • 2007
  • Hemire is a 6000m class deep-sea ROV, which is recently developed by Maritime & Ocean Engineering Research Institute (MOERI) of Korea Ocean Research & Development Institute (KORDI) for 6 years since 2001, sponsored by the Ministry of Maritime Affairs and Fisheries (MOMAF). Hemire dove upto 1,065m for the first east sea trial last April, and touched a 2,026m bottom of the east sea last September. Finally, last November, Hemire reached a 5,775m bottom of the pacific ocean successfully. This showed our own technologies for design and development of a deep-sea ROV as 4th nation in the world, and we made a great step forward for deep-sea exploration. This paper describes a general overview of a 6000m class deep-sea ROV, and briefly explains development procedure of Hemire and Henuvy. Finally, results of sea trial are summarized.

Variation of Calcium Carbonate Content and Dansgaard-Oeschger Events in the Continental Slope of the Central Bering Sea during the Last 65 Kyr (베링해 중부 대륙사면 지역의 지난 65,000년 동안 탄산염 함량 변화와 Dansgaard-Oeschger 사건들)

  • Kim, Sung-Han;Khim, Boo-Keun;Itaki, Takuya;Shin, Hye-Sun
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.215-224
    • /
    • 2008
  • A piston core (MR06-04 PC23A) collected from the northern continental slope in the central Bering Sea has recorded the high-resolution millennial-scale variation of calcium carbonate ($CaCO3$) content during the last 65 kyr. An estimation of the age of the core sediments was carried out by using the lithologic correlation of the deglacial laminated layers with a neighboring core (HLY02023JPC), complementing the last appearance datum of both Lychnocanoma nipponica sakaii (54 kyr) and Amphimelissa setosa (85 kyr). The probable age of core MR06-04 PC23A was approximately younger than 65 kyr. Two distinct events of a significant increase of $CaCO3$ in the deglacial laminated sediments clearly correspond to MWP1A and MWP1B in the Bering Sea (Gorbarenko et al. 2005) and to T1ANP and T1BNP in the North Pacific (Gorbarenko 1996). These pronounced peaks of $CaCO3$ contents result from the elevated carbonate production in the surface water and the subsequent weakened dilution due to terrestrial input, along with an enhanced oxygen minimum zone. The $CaCO3$ contents are low (${\sim}2%$) during the last glacial period mainly because of a low carbonate production caused by an expanded sea-ice cover and an increased dilution by terrigenous particles due to their closer distance to the continent during the sea-level low stand. The occurrence of seven distinct $CaCO3$ peaks in core MR06-04 PC23A is remarkable during MIS 3 and MIS 4, and they most likely correlate to the short-term millennial Dansgaard-Oeschger events.

Difference in Black-tailed Gull (Larus crassirostris) diet during the breeding season for the last 10 years in the South Sea of Korea

  • Kwon, Young-Soo;Noh, Hyung Soo;Kim, Miran
    • Journal of Ecology and Environment
    • /
    • v.36 no.4
    • /
    • pp.217-222
    • /
    • 2013
  • Sea temperature in the South Sea of Korea has been increased over the last decades. Seabirds are sensitive to changes in food availability in marine environment. In this study, we investigate the diet of Black-tailed gulls (Larus crassirostris) during the breeding season to identify changes of marine environment and biological response such as breeding performance in the South Sea of Korea. A total of 22 fish species or family (n = 128) from regurgitates by chicks were collected on Hongdo Island in 2002 and 2012. The most important prey item was Japanese anchovies (Engraulis japonicas). Proportion of Anchovy in diet increased in 2012 (70.5%) compared to 10 years ago (27.5%). Some species were newly found in 2012: Spotted chub mackerel (Scomber australasicus), Pacific sand lace (Ammodytes personatus), White ventral goby (Acanthogobius lactipes), Silver-strip round herring, Multicolorfin rainbowfish (Halichoeres poecilopterus), Silverside (Hypoatherina tsurugae), Surfperch (Neoditrema ransonneti) and Spotnape ponyfish (Leiognathus muchalis), but not in 2002. Especially, sub-tropic fish such as Kammal thryssa (Thryssa kammalensis), and Rosefish (Helicolenus hilgendorfi) were frequently observed in the diet of 2012. These results might reflect the increase of sea temperature in the South Sea of Korea.

Paleo-Tsushima Water influx to the East Sea during the lowest sea level of the late Quaternary

  • Lee, Eun-Il
    • Journal of the Korean earth science society
    • /
    • v.26 no.7
    • /
    • pp.714-724
    • /
    • 2005
  • The East Sea, a semi-enclosed marginal sea with shallow straits in the northwest Pacific, is marked by the nearly geographic isolation and the low sea surface salinity during the last glacial maximum (LGM). The East Sea might have the only connection to the open ocean through the Korea Strait with a sill depth of 130 m, allowing the paleo-Tsushima Water to enter the sea during the LGM. The low paleosalinity associated with abnormally light $\delta^{18}O$ values of planktonic foraminifera is interpreted to have resulted from river discharge and precipitation. Nevertheless, two LGM features in the East Sea are disputable. This study attempts to estimate volume transport of the paleo-Tsushima Water via the Korea Strait and further examines its effect on the low sea surface salinity (SSS) during the lowest sea level of the LGM. The East Sea was not completely isolated, but partially linked to the northern East China Sea through the Korea Strait during the LGM. The volume transport of the paleo-Tsushima Water during the LGM is calculated approximately$(0.5\~2.1)\times10^{12}m^3/yr$ on the basis of the selected seismic reflection profiles along with bathymetry and current data. The annual influx of the paleo-Tsushima Water is low, compared to the 100 m-thick surface water volume $(about\;79.75\times10^{12}m^3)$ in the East Sea. The paleo-Tsushima Water influx might have changed the surface water properties within a geologically short time, potentially decreasing sea surface salinity. However, the effect of volume transport on the low sea surface salinity essentially depends on freshwater amounts within the paleo-Tsushima Water and excessive evaporation during the glacial lowstands of sea level. Even though the paleo-Tsushima Water is assumed to have been entirely freshwater at that time period, it would annually reduce only about 1‰ of salinity in the surface water of the East Sea. Thus, the paleo-Tsushima Water influx itself might not be large enough to significantly reduce the paleosalinity of about 100 m-thick surface layer during the LGM. This further suggests contribution of additional river discharges from nearby fluvial systems (e.g. the Amur River) to freshen the surface water.

Organic Carbon, Calcium Carbonate, and Clay Mineral Distributions in the Korea Strait Region, the Southern Part of the East Sea

  • Khim, Boo-Keun;Shin, Dong-Hyeok;Han, Sang-Joon
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.128-137
    • /
    • 1997
  • This study presents results from a detailed sedimentological investigation of surface sediments obtained from the Korea Strait region, the southern part of the East Sea (Sea of Japan). The distribution of different types of bottom sediments is controlled by the recent fine-grained sediment transport and deposition combined with the lowerings of sea level during the last glacial period, forming a diverse mixture of organic-rich fine-grained and shelly coarse-grained sediments. In comparison to high organic concentration of fine-grained sediments in the inner continental shelf and slope areas, the shell-rich coarse-grained sediments on the outer shelf are discernible being further modified. These coarse-grained sediments are confirmed as relict resulting from the sediment dynamics during the lower sea levels of the last glacial period. Clay mineral distribution of the fine-grained sediments gives information about the transport mechanism. Presence of present-day current system (the Tsushima Warm Current) is most probable source for the fine-grained particles into the open East Sea from the East China Sea, indicating that Holocene sediment dynamics may be used to explain the observed distribution of surface coarse-grained shell-rich sediments.

  • PDF

Relations between Variation of Sea Surface Temperatures in the South Sea of Korea and Intensity of Typhoons (남해 해수면온도 변화와 태풍 세기와의 관계)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.403-407
    • /
    • 2008
  • Relations between variation of SSTs(sea surface temperatures) in the South Sea of Korea and intensity of typhoons which passed through the South Sea of Korea was analyzed for 36 years from 1970 to 2005. The SSTs in the South Sea show the rising trends continuously. The mean SST of the last 10 years(1996-2005) is higher $1.03^{\circ}C$ than the mean SST during 10 years(1970-1979). The rising trends are especially strong after 1994. The intensity of typhoon can be shown by the minimum sea level pressure. The minimum sea level pressures of typhoons which passed through the South Sea show the descending trends. The mean minimum sea level pressure of the last 10 years(1996-2005) is lower 10.1hPa than that during 10 years(1970-1979). The correlation analysis shows that the rising of SSTs in the South Sea has relations with the strengthening of intensity of typhoons.

High-Resolution Paleoproductivity Change in the Central Region of the Bering Sea Since the Last Glaciation (베링해 중부 지역의 마지막 빙하기 이후 고생산성의 고해상 변화)

  • Kim, Sung-Han;Khim, Boo-Keun;Shin, Hye-Sun;Uchida, Masao;Itaki, Takuya;Ohkushi, Kenichi
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.134-144
    • /
    • 2009
  • Paleoproductivity changes in the central part of the Bering Sea since the last glacial period were reconstructed by analyzing opal and total organic carbon (TOC) content and their mass accumulation rate (MAR) in sediment core PC23A. Ages of the sediment were determined by both AMS $^{14}C$ dates using planktonic foraminifera and Last Appearance Datum of radiolaria (L. nipponica sakaii). The core-bottom age was calculated to reach back to 61,000 yr BP. and some of core-top was missing. Opal and TOC contents during the last glacial period varied in a range of 1-10% and 0.2-1.0%, and their average values are 5% and 0.7%, respectively. In contrast, during the last deglaciation, opal and TOC contents varied from 5 to 22% and from 0.8 to 1.2%, respectively, with increasing average values of 8% and 1.0%. Opal and TOC MAR were low ($1gcm^{-2}kyr^{-1}$, $0.2gcm^{-2}kyr^{-1}$) during the last glacial period, but they increased (>5 and >$1gcm^{-2}kyr^{-1}$) during the last deglaciation. High diatom productivity during the last deglaciation was most likely attributed to the elevated nutrient supply to the sea surface resulting from increased melt water input from the nearby land and enhanced Alaskan Stream injection from the south under the restricted sea-ice and warm condition during the rising sea level. On the contrary, low productivity during the last glacial period was mainly due to decreased Alaskan Stream injection during the low sea-level condition as well as to extensive development of sea ice under low-temperature seawater and cold environment.

Post-Last Glacial Sea-Level Change and Time-Averaging appeared from the Molluscan Thanatocoenoses in the Southern Sea of Korea (한국 남해해역 패류군집에서 나타나는 시간평균화 현상과 최종 빙하기 이후 해수면 변동)

  • Lee, Yeon-Gyu
    • Journal of the Korean earth science society
    • /
    • v.26 no.6
    • /
    • pp.541-550
    • /
    • 2005
  • Molluscan shells were sampled from the continental shelf of South Sea: 19 stations in the southeast continental shelf and 5 in the southwest sea, in order to understand characteristics of sea level changes and time-averaging since the last glacial age. Radiocarbon dates were made on 42 dominant and specific species which were sampled from 24 stations. Time-averaging was observed and showed to be 11,939 years in age difference. The sea-level ranged from 150 to 160 m below sea level during the LGM (about 15,000 yrs B.P). The sea-level significantly rose to 60 m at around 9,000 yrs B.P. and became stable at 50 to 60 m between periods between 4,000 and 5,000 yrs B.P. Between 3,000 and 4,000 yrs B.P, the sea-level rapidly rose to a depth of $10\~20m$ below today’s present sea level.

The Last Interglacial Sea Levels Estimated from the Morphostratigraphic Comparison of the Late Pleistocene Fluvial Terraces in the Eastern Coast of Korea (한국 동해안에 있어서 최종간빙기의 구정선고도 연구 후기 경신세 하성단구의 지형층서적 대비의 관점에서)

  • 최성길
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.1-26
    • /
    • 1993
  • The estimation of the Last Interglacial sea level was made by using the thalassostatic terrace which had been developed in the lower reach of Namdaechon river in Kangneung, eastern coastal area of Korea. The fluvial terraces, which have been developed since late Pleistocene, were investigated. The main findings were as follows; 1) That Kangneung terrace I had been formed in the climax period of the Last Interglacial (Oxygen isotope stage 5e) was revealed. It was estimated that Kangneung terrace II had been formed during a certain warmer period between the climax period of the Last Interglacial and the early Last Glacial(probably Oxygen isotope stage 5c or 5a). 2) Being judged from the relative heights of the Kangneung terrace I and II, the sea levels of the formation periods of these terraces were estimated to have been relatively 17~20m and l0m higher than the present sea level, respectively. 3) The formation periods of the Wangsan terrace I and II were supposed to be the early and late Last Glacial respectively, being judged from the following 3 details ; a) the characteristics of the terrace deposits, b) the relation Wangsan terrace II to the buried valley floor, and c) the cross phenomena of the above two terraces to the Kangneung terraces. 4) The formation period of the pseudogleyed red soil in the Kangneung terrace I was estimated to be the middle or late period of the Last Interglacial.

  • PDF