• Title/Summary/Keyword: The greatest lower bound

Search Result 9, Processing Time 0.029 seconds

The Improved Estimation of the Least Upper Bound to Search for RSA's Private key

  • Somsuk, Kritsanapong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.6
    • /
    • pp.2074-2093
    • /
    • 2022
  • RSA is known as one of the best techniques for securing secret information across an unsecured network. The private key which is one of private parameters is the aim for attackers. However, it is exceedingly impossible to derive this value without disclosing all unknown parameters. In fact, many methods to recover the private key were proposed, the performance of each algorithm is acceptable for the different cases. For example, Wiener's attack is extremely efficient when the private key is very small. On the other hand, Fermat's factoring can quickly break RSA when the difference between two large prime factors of the modulus is relatively small. In general, if all private parameters are not disclosed, attackers will be able to confirm that the private key is unquestionably inside the scope [3, n - 2], where n is the modulus. However, this scope has already been reduced by increasing the greatest lower bound to [dil, n - 2], where dil ≥ 3. The aim of this paper is to decrease the least upper bound to narrow the scope that the private key will remain within this boundary. After finishing the proposed method, the new scope of the private key can be allocated as [dil, dir], where dir ≤ n - 2. In fact, if the private key is extremely close to the new greatest lower bound, it can be retrieved quickly by performing a brute force attack, in which dir is decreased until it is equal to the private key. The experimental results indicate that the proposed method is extremely effective when the difference between prime factors is close to each other and one of two following requirement holds: the first condition is that the multiplier of Euler totient function is very close to the public key's small value whereas the second condition is that the public key should be large whenever the multiplier is far enough.

Limit Analysis of Axisymmetric Forward Extrusion (축 대칭 전방 압출의 극한 해석)

  • Kim, Byung-Min;Choi, In-Keun;Choi, Jae-Chan;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.93-104
    • /
    • 1991
  • Limit analysis is based on the duality theorem which equates the least upper bound to the greatest lower bound. In this study, limit analysis of axisymmetric forming problem with workhardening materials is formulated by minimizing the upper bound functional and finite element program is developed for forward estrusion. Limit loads, velocity and flow line fields are directly obtained under various process conditions and deformation characteristics such as strains, strain rates and grid distortion are obtained from the optimum velocity components by numerical calculation. The experimental observation was carried out for extrusion and compared with computed results. The good agreement between theoretical and experimental results is shown that the developed programming is very effective for the analysis of axisymmetric extrusion.

  • PDF

Near λ-lattices

  • Chajda, Ivan;Kolarik, M.
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.2
    • /
    • pp.283-294
    • /
    • 2007
  • By a near ${\lambda}$-lattice is meant an upper ${\lambda}$-semilattice where is defined a parti binary operation $x{\Lambda}y$ with respect to the induced order whenever $x$, $y$ has a common lower bound. Alternatively, a near ${\lambda}$-lattice can be described as an algebra with one ternary operation satisfying nine simple conditions. Hence, the class of near ${\lambda}$-lattices is a quasivariety. A ${\lambda}$-semilattice $\mathcal{A}=(A;{\vee})$ is said to have sectional (antitone) involutions if for each $a{\in}A$ there exists an (antitone) involution on [$a$, 1], where 1 is the greatest element of $\mathcal{A}$. If this antitone involution is a complementation, $\mathcal{A}$ is called an ortho ${\lambda}$-semilattice. We characterize these near ${\lambda}$-lattices by certain identities.

  • PDF

Performance of Serial Concatenated Convolutional Codes according to the Concatenation Methods of Component Codes (구성부호의 연접방법에 따른 직렬연접 길쌈부호의 성능)

  • Bae, Sang-Jae;Lee, Sang-Hoon;Joo, Eon-Kyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.1A
    • /
    • pp.18-25
    • /
    • 2002
  • In this paper, the performance of three types of serial concatenated convolutional codes (SCCC) in AWGN (additive white Gaussian noise) channel is compared and analyzed. As results of simulations, it can be observed that Type I shows the best error performance at lower signal-to-noise ratio (SNR) region. However, Type III shows the best error performance at higher SNR region. It can be also observed the error floor that the performance cannot be improved even though increasing of the number of iterations and SNR at Type I. However, the performance of Type II and Type III are still improved over the five iterations at higher SNR without error floor. And BER performance of three types can be closed to upper bound of three types with increase of SNR. It can be also observed that the upper bound of Type III shows the best performance among the three types due to the greatest free distance.

Wave Propagation Characteristics in Saturated Porous Media II. Parametric Studies (포화된 다공성매체에서 파동의 전파특성 II. 파라미터 연구)

  • Kim, Sun-Hoon;Kim, Kwang-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.191-206
    • /
    • 2007
  • The general theoretical solutions for the wavespeed and damping derived in Part 1 of this work, are incorporated into the computer code. In this paper the code is used in a parametric study of the influence of excitation frequency and variations in material properties on propagation velocity and damping. Compressional wave velocity for waves of the first kind is shown to vary as a function of the frequency-permeability product, with a zone where wavespeed transitions from a lower bound value to a higher bound value with increasing values of the product. Damping is seen to be a maximum where the rate of change in wavespeed is greatest. Waves of the second kind also show a transition in wavespeed from near zero at low values of the frequency-permeability product to an upper bound value at higher values of the product.

Information-Theoretic Approaches for Sensor Selection and Placement in Sensor Networks for Target Localization and Tracking

  • Wang Hanbiao;Yao Kung;Estrin Deborah
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.438-449
    • /
    • 2005
  • In this paper, we describes the information-theoretic approaches to sensor selection and sensor placement in sensor net­works for target localization and tracking. We have developed a sensor selection heuristic to activate the most informative candidate sensor for collaborative target localization and tracking. The fusion of the observation by the selected sensor with the prior target location distribution yields nearly the greatest reduction of the entropy of the expected posterior target location distribution. Our sensor selection heuristic is computationally less complex and thus more suitable to sensor networks with moderate computing power than the mutual information sensor selection criteria. We have also developed a method to compute the posterior target location distribution with the minimum entropy that could be achieved by the fusion of observations of the sensor network with a given deployment geometry. We have found that the covariance matrix of the posterior target location distribution with the minimum entropy is consistent with the Cramer-Rao lower bound (CRB) of the target location estimate. Using the minimum entropy of the posterior target location distribution, we have characterized the effect of the sensor placement geometry on the localization accuracy.

A Homomorphism on Orthoimplication Algebras for Quantum Logic (양자논리를 위한 직교함의 대수에서의 준동형사상)

  • Yon, Yong-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.3
    • /
    • pp.65-71
    • /
    • 2017
  • The quantum logic was introduced by G. Birkhoff and 1. von Neumann in order to study projections of a Hilbert space for a formulation of quantum mechanics, and Husimi proposed orthomodular law and orthomodular lattices to complement the quantum logic. Abott introduced orthoimplication algebras and its properties to investigate an implication of orthomodular lattice. The commuting relation is an important property on orthomodular lattice which is related with the distributive law and the modular law, etc. In this paper, we define a binary operation on orthoimplication algebra and the greatest lower bound by using this operation and research some properties of this operation. Also we define a homomorphism and characterize the commuting relation of orthoimplication algebra by the homomorphism.

Functions of a-Tropomyosin Are Mainly Dependent upon the Local Structures of the Amino Terminus (a-Tropomyosin의 아미노 말단 구조가 기능에 미치는 영향)

  • Cho, Young-Joon
    • Journal of Life Science
    • /
    • v.14 no.5
    • /
    • pp.770-777
    • /
    • 2004
  • It has been previously reported that unacetylated a-tropomyosin(TM) produced in E. coli failed to bind to actin while acetylated muscle TM and Ala-Ser dipeptide fusion TM (AS-TM) bound well to actin. In order to determine the structural requirement of the amino terminus for high actin affinity, a recombinant tropomyosin (Ala-TM) that a single Ala residue was added to the amino terminus of Ala-TM was constructed, overexpressed, and purified from E. coli. Actin affinity of Ala-TM was 2.3$\times$$10^{6}$$M^{-1}$, whereas that of unacetylated TM was considerably lower than 0.1$\times$$10^{-6}$$M^{-1}$ indicating that addition of a single Ala residue to the amino terminus drastically increased, at least twenty times, actin affinity of TM. Ala-TM, however, bound to actin about three times weaker than acetylated TM and AS- TM, implying that the addition of an Ala residue was insufficient for complete restoration of high actin affinity. While Ala-TM, AS-TM, and muscle TM showed inhibition and activation of actomyosin Sl ATPase activity depending on myosin Sl concentration, the degree of inhibition and activation was different from each other. AS-TM exhibited the greatest inhibition of the ATPase at low Sl concentration, whereas the greatest activation of the ATPase was observed with muscle TM. These results, together with previous findings, strongly suggested that local structure of the amino terminus is the crucial functional determinant of TM.