• Title/Summary/Keyword: The earth retaining cantilever wall

Search Result 26, Processing Time 0.021 seconds

Development of the Analyzing Method for Earth Retaining Cantilever Walls using Stabilizing Piles (억지말뚝을 이용한 자립식 흙막이 공법의 해석기법 개발)

  • Kim, Chang-Young;Im, Jong-Chul;Park, Lee-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.998-1007
    • /
    • 2006
  • In former times, It is obvious that the earth retaining cantilever wall using stabilizing piles is definitely superior to the other methods due to economical efficiency and the efficiency of construction through model tests using a soil tank and practical application(Kim, 2006). However, this method was not proved in theoretical basis from the viewpoint of geotechnical engineering. Accordingly, a variety of model experiments in order to analyze the behavior of the earth retaining cantilever wall and stabilizing piles according to excavation step and earth pressure and stress acting on stabilizing piles according to excavation step were performed. On the basis of analyzing the result of model tests using a soil tank, this study suggests failure mechanism of clods and a method calculating virtual supported point. In addition, this study contributes to developing the analyzing method of retaining piles, stabilizing piles and beams connecting two piles and, this study helps this method to be established as a new design method through analyzing the results of model tests using a soil tank.

  • PDF

Pseudo-dynamic approach of seismic earth pressure behind cantilever retaining wall with inclined backfill surface

  • Giri, Debabrata
    • Geomechanics and Engineering
    • /
    • v.3 no.4
    • /
    • pp.255-266
    • /
    • 2011
  • Knowledge of seismic earth pressure against rigid retaining wall is very important. Mononobe-Okabe method is commonly used, which considers pseudo-static approach. In this paper, the pseudo-dynamic method is used to compute the distribution of seismic earth pressure on a rigid cantilever retaining wall supporting dry cohesionless backfill. Planar rupture surface is considered in the analysis. Effect of various parameters like wall friction angle, soil friction angle, shear wave velocity, primary wave velocity, horizontal and vertical seismic accelerations on seismic earth pressure have been studied. Results are presented in terms of tabular and graphical non-dimensional form.

Model Test Study on the Earth Pressure of the Retaining Wall with the Relieving Platform (선반식 옹벽의 토압에 관한 모형시험 연구)

  • Kim, Byoungil;Yoo, Wankyu;Yang, Mirim;Park, Yongseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.27-35
    • /
    • 2012
  • The relieving platform has the advantage of decreasing the total lateral earth pressure on the retaining wall and increasing the overall stability of the structure. Several modeling tests were performed to determine the earth pressure distribution on the retaining wall with a relieving platform and to compare it with that of the cantilever retaining wall. Different types of soil and angle of cutting surface were used to determine the effect of the soil characteristics and the backfill conditions on these earth pressure distributions. From the modeling tests, comparisons between the retaining wall with a relieving platform and the cantilever retaining wall show that the reduction of the lateral earth pressure and deformation of wall was indicated clearly on the retaining wall with a relieving platform. And the overall stability was increased by the relieving platform.

Field Measurements of Cantilever Wall with Unattached Strips in the Backfill (뒷채움 지반에 비정착식 띠보강재를 설치한 역T형 옹벽의 현장 계측)

  • 이종구;이만수;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.87-94
    • /
    • 2000
  • This paper concerns the distribution of earth pressures on a cantilever wall with unattached reinforcements in the backfill. This type of walls is different from the existing reinforced earth walls in that unattached reinforcements are placed in the backfill of rigid retaining wall such as gravity wall and cantilever wall, instead of connecting reinforcements to the wall segments. Two large-scale prototype tests have been carried out with a 4m high cantilever wall; one with unreinforced backfill, the other with unattached strips in the backfill. The reinforcing effect of unattached strips are discussed based on the earth pressure distribution measured in two large-scale prototype tests. Also, the comparison between measured and predicted earth pressure on a wall with unattached strips are discussed herein to confirm the validity of analytical prediction.

  • PDF

Numerical Analysis on Behavior of Cantilever Retaining Walls (캔틸레버 옹벽의 거동에 대한 수치해석적 연구)

  • Jang, In-Seong;Jeong, Chung-Gi;Kim, Myeong-Mo
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.75-86
    • /
    • 1996
  • Current methods to estimate the earth pressure for retaining wall analysis are based on Rankine or Coulomb approaches, in which the soil mass behind wall is assumed to reach to failure state with sufficient lateral movements. Some of recent research works carried out by field measurements reveal that the active earth. pressures by Ranking or Coulomb method are underestimated. It means that the lateral movements of wall and soil would not be mobilized enough to reach the failure state. In this study, the finite element method with Drucker -Prager model for soil is employed to investigate the behavior of concrete cantile,tier retaining wall, together with the influence of inclined backfill. The results indicate that the earth pressures on the retaining wall are strongly related to the mobilized lateral movements of wall and soil and that Ranking and Coulomb methods underestimate the resultant earth pressures and the increasing effect on earth pressure by inclined backfill. Based on this study, a simplified method to determine to earth pressures on cantilever retaining wall with horizontal backfill is proposed.

  • PDF

Effects of Relief Shelves on Stability of Retaining Walls

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.9
    • /
    • pp.25-31
    • /
    • 2022
  • Attaching shelf to retaining structure leads to a decrease in the total lateral earth pressure. This decrease enables the retaining structures to become more stable, to have small displacement, and to exhibit lower bending moments, the relief shelves effects are analyzed using FEM in order to understand how they stabilize cantilever wall in this study. Several models are varied by changing location and width of shelves to realize earth pressure and displacements of retaining wall. The displacement is getting smaller because earth pressure acting on shelf increases as shelves locations are lower and width is longer. The ground settlement variation effects caused by relief shelves are studied also. The ground settlement increases abruptly where shelf location is between of 0.5H and 0.625H, and settlement decreases suddenly where shelf width is between b/h=0.375 and b/h=0.500. The shelf significantly reduces earth pressure and movement of the wall. This decrease in the lateral pressure increases the retaining structure stability.

Vertical Earth Pressure Distribution on Cantilever Retaining Wall (역 T 형 옹벽에 작용하는 연직토압분포)

  • Yoo, Nam-Jae;Lee, Myeung-Woog
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.181-189
    • /
    • 1996
  • Centrifuge model tests of cantilever retaining wall were performed to investigate the vertical stress distribution due to selfweight of backfill material. Model tests were carried out to find the effect of arching action on vertical stress distribution by changing the roughness of rigid boundary slope and the distance between retaining wall and boudary slope. A reduced scale model of cantilever retaining wall was made with concrete and Jumunjin Standary Sand with 80 % of relative density was used as foundation and backfill material. Centrifuge tests were performed by increasing g-level up to 40 g with measuring vertical stress induced by selfweight of backfill material. Test results on vertical stress distribution were analyzed and compared with results of Silo theory.

  • PDF

A Study on the Stability of Cantilever Retaining Wall with a Short Heel (뒷굽이 짧은 캔틸레버 옹벽의 안정성에 관한 연구)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.17-28
    • /
    • 2018
  • Important parameters for the stability checks of cantilever wall are the active earth pressure and the weight of soil above the heel of the base slab. If the heel length is so long enough that the shear zone bounded by the failure plane is not obstructed by the stem of the wall, the Rankine active condition is assumed to exist along the vertical plane which is located at the edge of the heel of the base slab. Then the Rankine active earth pressure equations may be theoretically used to calculate the lateral pressure on the vertical plane. However, in case of the cantilever wall with a short heel, the application of Rankine theory is not only theoretically incorrect but also makes the lateral earth pressure larger than the actual pressure and results in uneconomical design. In this study, for the cantilever wall with a short heel the limit analysis method is used to investigate the mechanism of development of the active earth pressure and then the magnitude and location of the resultants of the pressure and the weight of the soil above the heel are determined. The calculated results are compared with the existing methods for the stability check. In case of the cantilever wall with a short heel, the results by the Mohr circle method and Teng's method show max. 3.7% and 32% larger than those of the limit analysis method respectively.

Analysis of Influencing Factors for Calculation of the Coulomb Earth Pressure of Cantilever Retaining Wall with a Short Heel (뒷굽 길이가 짧은 캔틸레버 옹벽의 Coulomb 토압 산정에 대한 영향 인자 분석)

  • Yoo, Kun-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.59-72
    • /
    • 2017
  • In this study, the calculation method of the active earth pressure acting on the imaginary vertical plane at the end of the heel of the wall is proposed. For cantilever retaining wall, a change of shear zone behind the wall affects the earth pressure in the vertical plane at the end of heel of the wall depending on wall friction and angle of ground slope. It is very complicated to calculate the earth pressure by a limit equilibrium method (LEM) which considers angles of failure planes varying according to the heel length of the wall. So, the limit analysis method (LAM) is used for calculation of earth pressure in this study. Using the LAM, the earth pressures considering the actual slope angles of failure plane are calculated accurately, and then horizontal and vertical earth pressures are obtained from them respectively. This study results show that by decreasing the relative length of the heel, the slope angle of inward failure plane becomes larger than theoretical slope angle but the slope angle of outward failure plane does not change. And also the friction angle on the vertical plane at the end of the heel of the wall is between the ground slope angle and the wall friction angle, thereafter the active earth pressure decreases. Finally, the Coulomb earth pressure can be easily calculated from the relationship between friction angle (the ratio of vertical earth pressure to horizontal earth pressure) and relative length of the heel (the ratio of heel length to wall height).

Numerical Analysis for Lateral Earth Pressure on Retaining Wall with Relieving Platform backfilled with Jumoonjin Sand (주문진 모래로 뒤채움한 선반식 옹벽의 수평토압에 관한 수치해석)

  • Moon, In-Jong;Kim, Byoung-Il;Yoo, Wan-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3916-3922
    • /
    • 2014
  • Generally, the retaining wall is becoming unstable as the height is higher. On the other hand, the retaining wall with the relieving platform is more stable and more economical than any other type of retaining wall, because the relieving platform the reduce the lateral earth pressure. In this study, numerical analyses were carried out for 15 cases varying with the type of retaining wall, length and location of the relieving platform and the backfill type. From the numerical analyses, the reduction of the lateral earth pressure was checked and the results of numerical analyses were compared with that of model tests and theoretical equations. As the results of this study, the lateral earth pressure of the retaining wall with the relieving platform is considerably less than that of cantilever wall. And the of magnitude of the lateral earth pressure is affected by the length and location of relieving platform and the backfill type.