• 제목/요약/키워드: The degree of agglomeration

검색결과 42건 처리시간 0.024초

분말 응집도가 BaTiO3/에폭시 복합체의 유전특성에 미치는 영향 (Effect of Degree of Particle Agglomeration on the Dielectric Properties of BaTiO3/Epoxy Composites)

  • 한정우;김병국;제해준
    • 한국재료학회지
    • /
    • 제18권10호
    • /
    • pp.542-546
    • /
    • 2008
  • $BaTiO_3$/epoxy composites can be applied as the dielectric materials for embedded capacitors. The effects of the degree of $BaTiO_3$ particle agglomeration on the dielectric properties of $BaTiO_3$/epoxy composites were investigated in the present study. The degree of particle agglomeration was controlled by the milling of the agglomerated particles. The size and content of the agglomerated $BaTiO_3$ particles decreased with an increase in the milling time. The dielectric constants and polarizations of $BaTiO_3$/epoxy composites abruptly decreased with the increase of the milling time. It was concluded that the dielectric constants and polarizations of $BaTiO_3$/epoxy composites decreased as the degree of particle agglomeration decreased. The degree of agglomeration of $BaTiO_3$ particles turned out to be a very influential factor on the dielectric properties of $BaTiO_3$/epoxy composites.

Research on the Impact of Logistics Industry Efficiency and Agglomeration Effect on Import and Export Trade in Korea

  • Cheng, Wen-Si
    • Journal of Korea Trade
    • /
    • 제25권5호
    • /
    • pp.93-109
    • /
    • 2021
  • Purpose - The logistics industry is often featured by its location relevance and industrial concentration. Industrial concentration is conducive to the effective transmission of information by reducing transaction costs and improving transaction efficiency, thus promoting the development of trade. The main purpose of this paper is to measure the spatial total factor productivity and location quotient of the logistics industry in Korea, and to study the impact of the logistics industry efficiency and agglomeration effect on import and export trade in Korea. Design/methodology - First, used the spatial stochastic frontier method to measure the spatial total factor productivity of the logistics industry in Korea, this serves as the efficiency index of the logistics industry in various regions of Korea. Second, calculated the location quotient (LQ) of the logistics industry to measure the industry's concentration degree. Third, employed a spatial econometric model to analyze the impacts of factors such as the efficiency and concentration levels of the logistics industry on import and export trade in Korea. Findings - This study's main findings can be summarized as follows: this study found that the overall efficiency of the logistics industry in Korea needs to be improved, even though it showed an upward trend in all regions of the country; Moreover, the agglomeration level of Korea's logistics industry needs to be improved; Finally, the positive spatial correlation and industrial agglomeration effect of Korea's logistics industry had a positive impact on the country's import and export trade. Originality/value - This study is innovative in terms of research perspective and methods. Most of the previous studies have measured the development level of the logistics industry using the logistics performance index (LPI), Fewer studies have assessed through the spatial total factor productivity and location quotient of the logistics industry in Korea to measure the efficiency index of the logistics industry in various regions of Korea and concentration degree, as well as there was almost no study on the impact of logistics industry efficiency and agglomeration effect on import and export trade in Korea. This study addresses this limitation by analyzing the impacts of the efficiency and agglomeration effect of the logistics industry on import and export trade in Korea.

전기폭발법에서 SMPS를 이용한 Cu 나노분말의 실시간 입자특성평가 (In-situ Particle Characterization of Cu Nanopowder using Scanning Mobility Particle Sizer in Pulsed Wire Evaporation Method)

  • 이창우;맹덕영;박중학;유지훈;이재훈;이창규;김흥회
    • 한국분말재료학회지
    • /
    • 제10권4호
    • /
    • pp.275-280
    • /
    • 2003
  • Synthesis and characteristics of Cu nanopowder were considered by in-situ characterization method using SMPS in pulsed wire evaporation process. With increasing pressure in chamber, particle size and degree of agglomeration increased by increase of collision frequency. Also, it was found from the XRD analyses and BET measurements that crystallite size and particle size decreased with elevating applied voltage. However, SMPS measurements and TEM observation revealed the increase of particle size and degree of agglomeration with increase of applied voltage. These results suggested that particle growth and agglomeration depend on overheating factor in chamber at the early stage and thermal coagulation in filtering system during powder formation until collection.

Agglomeration Effects and Foreign Direct Investment Location Choice: Cross-country Evidence from Asia

  • Choi, Paul Moon Sub;Chung, Chune Young;Lee, Kaun Y.;Liu, Chang
    • Journal of Korea Trade
    • /
    • 제24권1호
    • /
    • pp.35-58
    • /
    • 2020
  • Purpose - This study examines the determinants of foreign direct investment (FDI) location choice for Chinese firms, focusing on the agglomeration effect for firms of the same nationality. Design/methodology - The empirical data are China's inward FDI from the top 19 economies (excluding tax havens and Taiwan) in terms of FDI during 1997-2015 and China's outward FDI from the top 18 economies (excluding tax havens). This study uses a random effects generalized least squares model for panel data analysis. Findings - The results confirm that both host countries' costs and market conditions and the degree of agglomeration affect these countries' attractiveness for FDI inflows. Specifically, agglomeration has a significant effect on China's inward and outward FDI. This study confirms that the agglomeration of firms of the same nationality has predictive power for multinational enterprises' FDI location choices. The host countries' real GDP and trade openness also positively affect FDI inflows. Interestingly, however, China's production cost has a positive effect. Thus, inward FDI aimed at entering the Chinese market is increasing in recent years relative to the previous efficiency-seeking FDI. Inward FDI in China is therefore the market-entry type, whereas outward FDI by Chinese firms is the market-oriented type. Originality/value - These results suggest that the effects of the potential determinants of Chinese outward FDI are similar to those of inward FDI as China's trade liberalization progresses.

수소환원공정에 의한 니켈 미분말의 합성에 미치는 마그네슘 스테아린산의 첨가 영향 (Effect of magnesium stearate addition on synthesis of fine nickel powders by hydrogen reduction process)

  • 이윤복;이상근;박희찬;이미혜;김광호
    • 한국결정성장학회지
    • /
    • 제13권3호
    • /
    • pp.117-121
    • /
    • 2003
  • 염화 니켈과 마그네슘 스테아린산 혼합 분말로부터 수소환원 공정에 의하여 니켈 분말을 제조하고 반응온도 및 마그네슘스테아린산의 첨가에 따른 분말의 특성을 검토하였다. 마그네슘 스테아린산을 함유한 경우 과도한 입자 성장의 억제로 인하여 입경 감소 효과가 있었다. 마그네슘 스테아린산의 함유량이 증가함에 따라 이에 따른 액상량의 증가로 인하여 입경 감소와 입자들간의 응집 정도에도 영향을 주었다.

화학기상응축 공정으로 제조한 TiO2 나노분말의 광촉매 특성 (Photocatalytic Properties of TiO2 Nanopowder Synthesized by Chemical Vapor Condensation Process)

  • 임성순;남희영;윤성희;이창우;유지훈;이재성
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.123-128
    • /
    • 2003
  • $TiO_2$ nanopowder was synthesized by chemical vapor condensation (CVC) process and its photocatalytic property depending on microstructure was considered in terns of decomposition rate of organic compound. In order to control microstructure of $TiO_2$ nanopowder such as particle size and degree of agglomeration, precursor flow rate representing number concentration was changed as a process variable. In TEM observation, spherical $TiO_2$ nanoparticles with average size of 20 nm showed gradual increases in particle size and degree of agglomeration with increase of precursor flow rate. Also decomposition rate of organic compound increased with decreasing precursor flow rate. Thus, it was concluded that photocatalytic property was enhanced by targe surface area of disperse $TiO_2$ nanoparticles synthesized at lower precursor flow rate condition in CVC process.

Application of Iron Oxide as a pH-dependent Indicator for Improving the Nutritional Quality

  • Meng, Xiangpeng;Ryu, Jina;Kim, Bumsik;Ko, Sanghoon
    • Clinical Nutrition Research
    • /
    • 제5권3호
    • /
    • pp.172-179
    • /
    • 2016
  • Acid food indicators can be used as pH indicators for evaluating the quality and freshness of fermented products during the full course of distribution. Iron oxide particles are hardly suspended in water, but partially or completely agglomerated. The agglomeration degree of the iron oxide particles depends on the pH. The pH-dependent particle agglomeration or dispersion can be useful for monitoring the acidity of food. The zeta potential of iron oxide showed a decreasing trend as the pH increased from 2 to 8, while the point of zero charge (PZC) was observed around at pH 6.0-7.0. These results suggested that the size of the iron oxide particles was affected by the change in pH levels. As a result, the particle sizes of iron oxide were smaller at lower pH than at neutral pH. In addition, agglomeration of the iron oxide particles increased as the pH increased from 2 to 7. In the time-dependent aggregation test, the average particle size was 730.4 nm and 1,340.3 nm at pH 2 and 7, respectively. These properties of iron oxide particles can be used to develop an ideal acid indicator for food pH and to monitor food quality, besides a colorant or nutrient for nutrition enhancement and sensory promotion in food industry.

Nucleation and Growth of Vacancy Agglomeration in CZ Silicon Crystals

  • Ogawa, Tomoya;Ma, Minya
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1999년도 PROCEEDINGS OF 99 INTERNATIONAL CONFERENCE OF THE KACG AND 6TH KOREA·JAPAN EMG SYMPOSIUM (ELECTRONIC MATERIALS GROWTH SYMPOSIUM), HANYANG UNIVERSITY, SEOUL, 06월 09일 JUNE 1999
    • /
    • pp.45-49
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction XB, the degree of super-saturation $\sigma$ is given by [XB-XBS]/XBS=XB/XBS-1=ln (XB/XBS) because XB/XBS is nearly equal to unity. Here, XBS is the saturated concentration of vacancies in a silicon crystal and XB is a little larger than XBS. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}$B=${\mu}$0+RT ln XB+RT ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}$0 is an ideal chemical potential of the vacancies and ${\gamma}$ is an adjustable parameter similar to the activity of solute in a solution. Thus, $\sigma$(T) is equal to (${\mu}$B-${\mu}$BS)/RT. Driving force of nucleation of the vacancy agglomeration will be proportional to the chemical potential difference (${\mu}$B-${\mu}$BS) or $\sigma$(T), while growth of the vacancy agglomeration is proportional to diffusion of the vacancies and grad ${\mu}$B.

  • PDF

Nucleation and growth of vacancy agglomeration in CZ silicon crystals

  • Ogawa, Tomoya;Ma, Minya
    • 한국결정성장학회지
    • /
    • 제9권3호
    • /
    • pp.286-288
    • /
    • 1999
  • When concentration of vacancies in a CZ silicon crystal is defined by molar fraction $X_{B}$, the degree for supersaturation $\sigma$ is given by $[X_{B}-X_{BS}]/X_{BS}=X_{B}/X_{BS}-1=ln(X_{B}/X_{BS})$ because $X_{B}/X_{BS}$ is nearly equal to unity. Here, $X_{BS}$ is the saturated concentration of vacancies in a silicon crystal and $X_{B}$ is a little larger than $X_{BS}$. According to Bragg-Williams approximation, the chemical potential of the vacancies in the crystal is given by ${\mu}_{B}={\mu}^{0}+RT$ ln $X_{B}+RT$ ln ${\gamma}$, where R is the gas constant, T is temperature, ${\mu}^{0}$ is an ideal chemical potential of the vacancies and ${\gamma}$ is and adjustable parameter similar to the activity of solute in a solute in a solution. Thus, ${\sigma}(T)$ is equal to $({\mu}_{B}-{\mu}_{BS})/RT$. Driving force of nucleation for the vacancy agglomeration will be proportional to the chemical potentialdifference $({\mu}_{B}-{\mu}_{BS})/RT$ or ${\sigma}(T)$, while growth of the vacancy agglomeration is proportaional to diffusion of the vacancies and grad ${\mu}_{B}$.

  • PDF

Mechanism of strength damage of red clay roadbed by acid rain

  • Guiyuan Xiao;Jian Wang;Le Yin;Guangli Xu;Wei Liu
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.473-480
    • /
    • 2023
  • Acid rain of soils has a significant impact on mechanical properties. An X-ray diffraction test, scanning electron microscope (SEM) test, laser particle size analysis test, and triaxial unconsolidated undrained (UU) test were carried out in red clay soils with different compaction degrees under the effect of different concentrations of acid. The experiments demonstrated that: the dissolution effect of acid rain on colluvium weakened with the increase in the compacting degree under the condition of certain pH values, i.e., the damage to the structure of red clay soil was relatively light, where the number of newly increased pores in the soil decreased and the agglomeration of soil particles increased; for the same compacting degree, the structural gap decreased, and the agglomeration increased with the increase in the pH value (acidity decreases) of the acid rain; the dissolution rate of Si, Al, Fe, and other elemental minerals and cement in red clay soil was found to be higher under the effect of acid rain, in turn destroying the original structure of the soil body and producing a large number of pores. This is macroscopically expressed as the decrease of the soil cohesion and internal friction angle, thereby reducing the shear strength of the soil body.