• Title/Summary/Keyword: The Quaternary

Search Result 1,248, Processing Time 0.034 seconds

Isolation and Identification of Phenolic Tertiary and Quaternary Alkaloids from Thalictrum uchiyamai (한국산 Thalictrum속 식물의 성분연구(II) 자주꿩의 다리 뿌리의 성분)

  • 이인란
    • YAKHAK HOEJI
    • /
    • v.28 no.3
    • /
    • pp.185-190
    • /
    • 1984
  • Protothalipine colorless needle crystal, mp $195-6^{\circ}$, $C_{21}H_{25}NO_{5}$) and jatrorrhizine chloride (Base A, orange needle crystal, mp $198^{\circ}$) are identified by chemical, spectral analysis, and comparison with authentic sample. Base B (reddish crystal, mp $192-4^{\circ}$) might be a artifact substance, which was changed from the jatrorrhizine chloride. Base C (yellowish needle crystal, mp $228~230^{\circ}$) and Base D (reddish needle crystal, mp $211~213^{\circ}$) were assumed to be thalifendine chloride, desoxythalidastine chloride by phytochemical and spectral analysis respectively.

  • PDF

The Relationship between the Arctic Oscillation and Heatwaves on the Korean Peninsula (여름철 북극 진동과 한반도 폭염의 관련성)

  • Jeong-Hun Kim;El Noh;Maeng-Ki Kim
    • The Korean Journal of Quaternary Research
    • /
    • v.33 no.1_2
    • /
    • pp.25-35
    • /
    • 2021
  • In this study, we identified characteristics of heatwaves on the Korean Peninsula and related atmospheric circulation patterns using data on the daily maximum temperature (TMX) and reanalysis data for the past 42 years (1979-2020) and analyzed their connection to the Arctic oscillation (AO). The heatwave on the Korean Peninsula showed to be stronger and more frequent in the 2000s. The recent strong and frequent heatwaves on the Korean Peninsula are mainly affected by abnormal high-pressure over the Korean Peninsula on the middle/upper-level atmosphere and the strengthening of the North Pacific high pressure. Interestingly, composite difference of sea level pressure showed very similar results to the positive AO pattern. The correlation coefficients between the summertime AO and the TMX and HWD of the Korean Peninsula were 0.407 and 0.437, respectively, which showed a statistical significance in 1%, and showed a clear relationship with the abnormal high-pressure over the Korean Peninsula and the strengthening of the North Pacific high pressure. In addition, in the positive AO phase, the TMX and HWD of the Korean peninsula were approximately 30.1 ℃ and 14.6 days, which were about 1.2 ℃ and 8.8 days higher than in the negative AO phase, respectively. As a result of the 15-year moving average correlation analysis, the relationship between the heatwave and AO on the Korean Peninsula has increased significantly since 2003, and the linear relationship between them has become more apparent. Moreover, after the 2000s, when the relationship developed, AO had more strongly induced the atmospheric circulation pattern to be more favorable to the occurrence of heatwaves in the Korean Peninsula. This study implies that understanding the AO, which is the large-scale variability in the Northern Hemisphere, and the Arctic-mid latitude teleconnection, can improve the performance of global climate models and help predict the seasonality of the summer heatwave on the Korean Peninsula.

A coupled model simulation of the Last Glacial Maximum

  • Kim, Seong-Jung
    • Proceedings of the Korean Quaternary Association Conference
    • /
    • 2004.11a
    • /
    • pp.37-43
    • /
    • 2004
  • The response of the CCCma coupled climate model to the imposition of LGM conditions is investigated. The global mean SAT and SST decrease by about $10^{\circ}C$ and $5.6^{\circ}C$ in the coupled model. Tropical SST decreases by $6.5^{\circ}C$, whereas CLIMAP reconstructions suggest that the tropics cool by only about $1.7^{\circ}C$, although the larger tropical cooling is consistent with the more recent proxy estimates. With the incorporation of a full ocean component, the coupled model gives a realistic spatial SST pattern, capturing features associated with ocean dynamics that are seen in the CLIMAP reconstructions. The larger decrease of the surface temperature in the model is associated with a reduction in global precipitation rate (about 15%). The tropical Pacific warm pool retreats to the west and a mean La $Ni\tilde{n}a$-like response is simulated with less precipitation over the central Pacific and more in the western tropical Pacific. The more arid ocean climate in the LGM results in an increase in SSS almost everywhere. This is particularly the case in the Arctic Ocean where large SSS increase is due to a decrease in river discharge to the Arctic Ocean associated with the accumulation of snow over the ice sheet, but in the North Atlantic by contrast SSS decreases markedly. This remarkable reduction of SSS in the North Atlantic is attributed to an increase in fresh water supply by an increase in discharges from the Mississippi and Amazon rivers and an increase in P-E over the North Atlantic ocean itself. The discharges increase in association with the wetter LGM climate south of the Laurentide ice sheet and in South America. The fresh water capping of the northern North Atlantic results in a marked reduction of deep convection and consequently a marked weakening of the North Atlantic overturning circulation. In the LGM, the maximum overturning stream function associated with the NADW formation decreases by about 60% relative to the control run, while in the Southern Ocean, oceanic convection is stronger in the LGM due to reduced stratification associated with an increase in SSS and a decrease in SST and the overturning stream function associated with the formation of AABW and the outflow increases substantially.

  • PDF