• Title/Summary/Keyword: The Quaternary

Search Result 1,248, Processing Time 0.028 seconds

Absolute Age Determination of One of the Oldest Quaternary(?) Glacial Deposit (Bunthang Sequence) in the Tibetan Plateau Using Radioactive Decay of Cosmogonic $^{10}Be$ and $^{26}Al$, the Central Kavakoram, Pakistan: Implication for Paleoenvironment and Tectonics (방사성 우주기원 동위원소를 이용한 티벳고원에서 가장 오래된 제4기(?) 빙성퇴적물인 Bunthang sequence의 절대 연대측정과 이의 고환경 및 지반운동에 대한 의미)

  • Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.2 s.119
    • /
    • pp.165-176
    • /
    • 2007
  • Absolute age of the deposition of 1.3 km-thick Bunthang sequence within the Skardu intermontane basin of the Central Karakoram was determined using radioactive decay of cosmogonic $^{10}Be$ and $^{26}Al$ burial dating. The Bunthang sequence deposited around 2.65 Ma, which is the oldest glaciation in the region. The timing of deposition of the Bunthang sequence is consistent with the previous suggestion that the basin filling took place between Brunhess and Matuyama chrons. Four major sedimentary facies interfinger within the Bunthang sequence: glacial diamict, lacustrine, fluvial and lacustrine facies upward. This sedimentary distinctiveness and the lack of evidence on the faults for alternative pull-apart basin model around the Bunthang sequence, suggest that the depressional basin was formed by deep subglacial erosion during the exrtensive Bunthang Glacial Stage and subsequently the sediments underlain by basal diamict, was quickly deposited by preglacial and paraglacial processes. Temporary ponding of the Indus River due to tectonic uplift in the downstream or blockage by mass movements might make the basin filing more possible. The hypothesis that the single ice sheet developed on the Tibetan Plateau during the global last glacial cycle should be refuted by the existence of the older extensive Bunthang glacier Furthermore, the extensive glaciation during the early Quaternary (and thus progressive decrease in extent with time) suggests that there may have been significant uplift of the Pamir to the west and Himalaya to the south, which would have reduced the penetration of westerlies and Indian summer monsoon and hence moisture supply to the region.

Marine Terraces of the Eastern Coast of Korean Peninsula

  • Park, Seong-Gil
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.15-15
    • /
    • 2003
  • In South Korea, marine terraces have been well developed along the eastern coastal zone, and previous researches on the marine terraces have also been focused on to this coastal zone. The marine terraces of the eastern coast of South Korea had been classified into three terrace groups, that is, the higher, middle, and lower surface ones, according to the heights of marine terraces by previous studies(Oh, 1981 ;Chang, 1987 ;Yoon et. al, 1999, 2003 ; Hwang and Yoon, 1996 etc.). Recently, however, it tends to classify the marine terraces based on the concept of geomorphic surface units(Lee, 1987 ; Kim, 1990 ; Choi, S. 2003; Choi S. et. al 2003a,b, etc). For example, it was proposed that the marine terrace surfaces of Eupcheon coast of the southeastern coastal area of Korea could be classified into 16 geomorphic surfaces, i.e., Eupcheon 1terrace(former shoreline height of 160m), 2(153m), 3(140m), 4(130m), 5(124m), 6(115m), 7(100m), 8(92m), 9(82m), 10(71m), 11(62m), 12(53m), 13(43m), 14(35m), 15(18m) and 16(10m) surfaces, in descending order, according to the former shoreline heights(Choi, S, 2003 ; Choi, S. et. al, 2003a,b). Among these terraces, Eupcheon 1, 2, 4, 5 and 7 surfaces had not been reported in previous works. Among the above mentioned marine terraces, Eupcheon 15 terrace, the most widely and continuously distributed marine terrace have been identified as marine terrace of the Last Interglacial culmination period(oxygen isotope stage 5e) which was based on amino acid dates(124∼125ka BP) and geomorphological features such as red soil, pollen analysis, fossil cryogenic structures and crossing terrace concept. Eupoheon 15 terrace surfaces have also been proposed as the key surface for the identification and correlation of the so-called '5e' marine terrace in the eastern coast of South Korea. This terrace was reconfirmed as the Last Interglacial culmination period, which was based on the identification of Ata tephra, one of the wide-spread marker tephra which indicates the Last Interglacial culmination period in Japan by Sasaki et. al(2002). It was thought that marine terraces of the eastern coast of South Korea had been formed by the steady-state uplifting during the Quaternary glacio-eustatic sea level changes(Choi, 1997). The uprift rate of 10cm/1,000years had been proposed in the eastern coast of South Korea based on the former shoreline altitude(18m) of the above Eupcheon 15 terrace. Therefore, it can be estimated that Eupcheon 1 terrace had been formed in the early Pleistocene from the above uprift rate. The OSL dating for the samples of Eupcheon 7, 9, 13, 15 and 16 terraces and identification of marker tephra in the terrace deposits are in progress. It is expected that more elaborate chronology on themarine terraces of the eastern coast of South Korea could be established by these absolute dates and marker-tephra.

  • PDF

Large-scale, Miocene Mud Intrusion into the Overlying Pleistocene Coastal Sediment, Pohang City, SE Korea: Deformation Mechanism, Trigger, and Paleo-seismological Implication for the 2017 Pohang Earthquakes

  • Gihm, Yong Sik;Ko, Kyoungtae;Choi, Jin-Hyuk;Choi, Sung-ja
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.585-596
    • /
    • 2020
  • The 2017 Pohang Earthquakes occurred near a drill site in the Pohang Enhanced Geothermal System. Water injected for well stimulation was believed to have reactivated the buried near-critically stressed Miocene faults by the accumulation of the Quaternary tectonic strain. However, surface expressions of the Quaternary tectonic activity had not been reported near the epicenter of the earthquakes before the site construction. Unusual, large-scale water-escaped structures were identified 4 km away from the epicenter during a post-seismic investigation. The water-escaped structures comprise Miocene mudstones injected into overlying Pleistocene coastal sediments that formed during Marine Isotope Stage 5. This indicates the vulnerable state of the mudstones long after deposition, resulted from the combined effects of rapid tectonic uplift (before significant diagenesis) and the development of an aquifer at their unconformable interface of the mudstone. Based on the detailed field analysis and consideration of all possible endogenic triggers, we interpreted the structures to have been formed by elevated pore pressures in the mudstones (thixotropy), triggered by cyclic ground motion during the earthquakes. This interpretation is strengthened by the presence of faults 400 m from the study area, which cut unconsolidated coastal sediment deposited after Marine Isotope Stage 5. Geological context, including high rates of tectonic uplift in SE Korea, paleo-seismological research on Quaternary faults near the study area, and historical records of paleoearthquakes in SE Korea, also support the interpretation. Thus, epicenter and surrounding areas of the 2017 Pohang Earthquake are considered as a paleoseismologically active area, and the causative fault of the 2017 Pohang Earthquakes was expected to be nearly critical state.

Late Quaternary Sedimentary Processes in the Northern Continental Margin of the South Shetland Islands, Antarctica (남극 남쉐틀랜드 군도 북부 대륙주변부의 후기 제 4기 퇴적작용)

  • 윤석훈;윤호일;강천윤
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.1
    • /
    • pp.1-12
    • /
    • 2004
  • Sedimentary facies and high-resolution echo facies were analyzed to elucidate sedimentation pattern of the late Quaternary glacial-marine deposits in the northern continental margin of the South Shetland Islands. Six sedimentary facies are classified, based on grain texture and sedimentary structures in gravity cores. The high-resolution (3.5 ㎑) echo characters are classified into 6 echo facies on the basis of clarity, continuity, and shape of bottom and subbottom echoes together with seafloor topography. Distribution of the echo and sedimentary facies suggest that there was a significant change in sedimentation pattern between the Last Glacial Maximum (LGM) and subsequent glacier-retreating period. When the grounded glaciers extended to the present shelfbreak during LGM, coarse-grained subglacial tills were widespread in the shelf area, and deep troughs in the shelf were carved beneath the fast-flowing ice steam. As the glacial margin retreated landward after LGM, dense meltwater plumes released from the retreating ice-front were funneled along the glacier-carved troughs, and accumulated channel- or cannyon-fill deposits in the shelf and the upper to mid slope. At that time, slope sediments seem to have been reworked by slope failures and unsteady contour currents, and further transported by fine-grained turbidity currents along the South Shetland Trench. After the glacial retreat, sediments in the shelf and slope areas have been mainly introduced by persistent (hemi) pelagic settling, and fine-grained turbidity currents frequently occur along the axis of the South Shetland Trench.

Marine Terraces and Quaternary Faults in the Homigot and the Guryongpo, SE Korea (호미곶과 구룡포지역 해안단구와 신기지구조운동)

  • Choi, Sung-Ja
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.231-240
    • /
    • 2016
  • Three Quaternary faults have been revealed in marine terraces nearby the Homigot and the Gurongpo in the southeastern offshore of Korean Peninsula. The Hajung fault cuts the $4^{th}$ marine terraces and the Guman fault the $2^{nd}$, respectively. The Hajung fault strikes $N55^{\circ}$ to $45^{\circ}W$ and dips $40^{\circ}$ to $45^{\circ}NE$ with reverse-displacement of 180cm vertically. There are four sets of colluvial sediment strata that would be produced by faulting and indicate four times of fault movements during MIS 7 and MIS 5c. The Guman fault site consists of three sets of reverse faults that strike $N80^{\circ}E$ to $N70^{\circ}W$ and dip $25^{\circ}{\sim}35^{\circ}SE$ to $30^{\circ}SW$ with vertical displacement of 9~18 cm. The Guman faulting occurred during 80 ka (MIS 5a) to 71 ka (MIS 4) but it extends only to the lowest bed, the pebble sand bed, lay just on the unconformity, and not to the upper. Considering the attitude of the faults, we inferred that the Hajung fault was activated under the ENE-WSW compression during MIS 7 to MIS 5c and the Guman under N-S trending compression during MIS 5a. Using the OSL age dating results, we reconfirmed that the $2^{nd}$ terrace is correlated to MIS 5a and the $4^{th}$ terraces to MIS 7.

Characteristics of the Main Fault Zone Developed Along Yangsan Fault : On the Outcrop of Cheonjeon-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea (양산단층 주 단층대의 발달특성 : 울산광역시 울주군 두동면 천전리 일대의 노두를 중심으로)

  • Ryoo, Chung-Ryul;Cheon, Youngbeom
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.4
    • /
    • pp.347-357
    • /
    • 2019
  • The main fault zone of the Yangsan Fault, located in the southeastern part of the Korean peninsula, is newly found at the Cheonjin-ri, Dudong-myeon, Ulju-gun, Ulsan, Korea. About 100 wide fault zone exposed along the Guryangcheon stream strikes N-S and dips over 70° toward east. The main fault zone is composed of N-S-striking gouge and breccia layers and enclosed lenses. Striations on the subvertical fault surfaces mainly indicate dextral slip, but moderate-angle minor reverse faults showing top-tothe-west shearing transect the foliated high-angle gouge and breccia layers. These indicate that the dextral slip along the fault, which is interpreted as the main movement of the fault, was followed by reverse slip. The fault zone is composed of N-S-striking gouge layers and enclosed, fractured lenses. Locally distributed NE-SW- to E-W-striking fault gouge layers with fractured lenses show asymmetric folds, indicating progressive dextral movement. Therefore, the exposed fault zone has a high internal complexity due to the combined effects of NNE-SSW-trending dextral shearing and E-W-trending shortening by compression. In addition, around main boundary fault between the western volcanic rocks and eastern sedimentary rocks offsets the overlying Quaternary fluvial conglomerate. This is a good example that understanding of internal structures of main fault zone (or fault core), such as the Yangsan Fault, plays an important role to study the Quaternary activity and to find the active fault.

Stratigraphy of Late Quaternary Core Sediments and Comparative Study of the Tephra Layers from the Northwestern Ulleung Basin of the East Sea (울릉분지 북서부 해역의 코어퇴적물에 대한 제4기 후기 테프라 층서 및 테프라층 비교 연구)

  • 김일수;박명호;류병재
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.225-232
    • /
    • 2003
  • Three piston cores. obtained from the northwestern Ulleung Basin of the East Sea, are analyzed to study the tephrostratigraphy of the late Quaternary core sediments and to reveal the comparative characteristics of the tephra layers. The cores consist mainly of the muddy sediments that are partly interbedded with lapilli tephra and ash layers. The muds are further divided into hemipelagic and turbiditic mud facies. The hemipelagic facies is dominated by bioturbated mud and crudely laminated mud, whereas the turbiditic facies includes mainly thinly laminated mud and homogeneous mud, and often alternates with non-turbiditic muds. According to microscopic observation and EDX analysis, three tephra layers of the Ulleung-Oki (U-Oki; ca. 9.3 ka), Aira-Tanzawa (AT: ca. 22~24.7 ka) and Ulleung-Yamato (U-Ym; ca. 25~33 ka) are identified in the study cores. Among these, the U-Oki and U-Ym layers, originating from the Ulleung Island, consist mainly of massive-type glass shards with alkali feldspar. Both of the tephra layers contain a lower content of SiO$_2$ (57~66.5 wt.%) and a higher content of Na$_2$O+K$_2$O (11~16 wt.%) than the AT layer (SiO$_2$=75~78.5 wt.%, Na$_2$O+K$_2$O=6.5~9 wt.%) that consists of typical plane-type and/or bubble-wall glass grains. Compared with that of the U-Ym layer, a sedimentary facies of the U-Oki layer is very thick and contains three stratigraphic units, probably due to relatively large and different supplies of pyroclastic sediments. Thus, the eruption of Ulleung Volcano (ca. 7,300 B.C.) is thought to have had a more powerful effect on depositional environment than the U-Ym eruption.

Surface Resistance of Antistatic Agent Using Lithium-Fluoro Compound and Quaternary Ammonium Salt and Characteristics Evaluation of Antistatic Film (리튬 불소계 화합물과 4차 암모늄염을 사용한 대전방지제의 표면저항 및 대전방지필름의 특성 평가)

  • Soh, Soon-Young;Chun, Yong-Jin;Lee, Jae-Kyeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2020
  • A colorless antistatic agent was prepared for use in antistatic films for liquid crystal displays (LCDs) requiring low surface resistance and high transmittance. Among various lithium-fluoro compounds and quaternary ammonium salts, antistatic materials were selected based on their electrical conductivity, and antistatic agents were prepared to measure the surface resistance. As a result, the material with high conductivity showed a relatively low surface resistance, i.e., relatively good antistatic performance. Based on the antistatic materials selected, the formulation ratio for producing the best antistatic agent was established through the experimental design method and the effects of each factor were analyzed. The higher the use of lithium- fluoro compounds as antistatic materials, the higher the ratio of oligomer use with multi-functional groups, and the smaller the surface resistance. The quaternary ammonium salts increased the antistatic performance of the lithium-fluoro compounds, but the effects of the amount used were not relatively large. After manufacturing the antistatic PET film, the properties of the antistatic film showed low surface resistance values (<109 Ω/sq.), high permeability (>92%), low haze (<0.5%), and high whiteness (L>95). In addition, the antistatic film reliability was found to be excellent by showing a stable surface-resistance change rate of less than 10%, even under high temperature and high humidity conditions.

Textural Characters of the Sediments from Neolithic site Moonamni Coastal Zone, East Sea of Korea -Implication of the Holocene High Stand Sea Level (강원도 동해안 문암리 신석기 유적지 퇴적층의 조직 특성)

  • 박용안;김수정;최진용
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.1
    • /
    • pp.27-37
    • /
    • 2003
  • The Neolithic relics containing sedimentary deposits have been found in the Moonamni coastal zone of the East Sea, Korea. The purpose of this research is to establish the late Quaternary stratigraphy of the coastal dune deposit and to elucidate its depositional environment of the Neolithic-site sediments on the basis of analytical properties of grain size population and mineralogy of the sediments. As a result, the vertical sections of the sediments from three trenches are characterized by three major stratigraphic depositional units of Unit 3, Unit 2 and Unit 1 in ascending order. Unit 3 and 2 can be further divided into tow sub-units. Unit 3 is composed of massive sands in the lower part and muddy sand in the upper part. It is considered that the Unit 3 is a typical dune deposit showing well-sorted sands. Unit 2 is characterized by the cross-bedding, and include archaeological remains such as pottery shards. This unit can be further divided into two sub-units of muddy sand in the lower part and sand in the upper part. Unit 1 occupies the top section and consists of modem dune sediment. The Neolithic cultural remains would be accumulated in the coastal dune area in relation to dynamic condition of beach system under the high stand of Holocene sea-level at about 7,800∼6,500 yr B.P. or so.

  • PDF

Composition and Evolution of Lithosphere Beneath the Jeju Island Region (I): A Review (제주도 암석권의 성분과 진화(I): 리뷰)

  • Yang, Kyounghee
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.261-281
    • /
    • 2016
  • Our knowledge of the lithosphere beneath the Korean Peninsula has been improved through petrologic and geochemical studies of upper mantle xenoliths hosted by Quaternary intraplate alkali basalts from Jeju Island. The xenoliths are mostly spinel lherzolites, accompanied by subordinate harzburgite and pyroxenites. The mantle xenoliths represent residual mantle material showing textural and geochemical evidence for at least a three-stage evolution, fractional partial melting, recrystallization, and metasomatism. Their composition primarily controlled by early fractional melt extraction and porphyroclastic and mylonitic fabrics formed in a shear-dominated environment, which was subsequently modified by residual slab-derived fluids (or melts). Modal metasomatic products occur as both anhydrous phase(orthopyroxene) and hydrous phase (phlogopite). Late-stage orthopyroxene is more common than phlogopite. However, chemical equilibrium is evident between the primary and secondary orthopyroxene, implying that the duration of post-metasomatic high temperatures enabled complete resetting/reequilibration of the mineral compositions. The metasomatic enrichment pre-dates the host Jeju Quaternary magmatism, and a genetic relationship with the host magmas is considered unlikely. Following enrichment in the peridotite protolith in the mantle wedge, the upper mantle beneath proto-Jeju Island was transformed from a subarc environment to an intraplate environment. The Jeju peridotites, representing old subarc fragments, were subsequently transported to the surface, incorporated into ascending Quaternary intraplate alkali basalt. The result of this study implies that long term material transfer in the transformation of geotectonic setting from a subarc to intraplate may have played a significant role in the evolution of lithospheric mantle, resulting in the enriched mantle domains, such as EM I or EM II in the lithospheric mantle beneath East Asia.