• Title/Summary/Keyword: The Quaternary

Search Result 1,248, Processing Time 0.03 seconds

Characteristics of Marine Terrace Sediments Formed during the Marine Isotope Stage 5e in the West South Coast of the Korean Peninsula (한반도 서남해안 MIS 5e 해안단구의 퇴적층 특성 연구)

  • Yang, Dong-Yoon;Han, Min;Kim, Jin Cheul;Lim, Jaesoo;Yi, Sangheon;Kim, Ju-Yong
    • Economic and Environmental Geology
    • /
    • v.49 no.6
    • /
    • pp.417-432
    • /
    • 2016
  • It was firstly revealed in this research that the marine terrace of the Ijin-ri (Bukpyung-myeon, Haenam-gun) was formed during the last interglacial (Marine Isotope Stage 5e; MIS 5e). The marine terrace totally ranging from 4.8 m (asl) to 8.8 m (asl) is subdivided into 4 units; Unit I ranges 4.8-5.3 m, unit II ranges 5.3-6.9 m, unit III ranges 6.9-8.3 m, and unit IV ranges 8.3-8.8 m. Strong evidences that units II and III were formed during MIS5e were obtained based on OSL dating, the physical characterizations such as particle size distribution, magnetic susceptibility and water content, principal element and trace element analyses, and quantitative clay mineral analysis for samples at the 30 cm intervals. The rounded gravels on the marine terrace are regarded to be originated from the clastic materials transported directly from the surrounding mountains toward the marine and abraded in the coastal area, without any fluvial processes. During the warmest period (125k, unit II), the increase in rainfall, along with the rapid rise in sea level, was likely caused the high amount of clastic materials transported to the upper part of the beach. As a result of comparing clay mineral ratios of study site with those derived from sediments of either tidal flats, or the Yellow Sea, it is interpreted that the sediments of study site were influenced from the marine. The results will be used to investigate the hydrological activity and sedimentary environment during the high sea level in the past.

Magnetic Parameters as Indicators of Late-Quaternary Environments on Fort Riley Kansas (암석 자기 변수들을 이용한 제4기 고환경 복원-Fort Riley 캔사스)

  • Park, kyeong
    • The Korean Journal of Quaternary Research
    • /
    • v.11 no.1
    • /
    • pp.57-68
    • /
    • 1997
  • Climatic change of the late-Quaternary period has been record-ed in the loess deposits of the central Great plains and the record of such change is extractable using a number of approaches and parameters. The stratigraphy of loess deposits which have been investigated on Fort Riley exhibits the same sequence of loess units and intercalated buried soils as is found elsewhere in the re-gion but adds detail unique to the reservation Upland late-Qua-ternary composite stratigraphy preserved on the reservation con-sists of the basal Sangamon soil of the Last interglacial(c. 120-110ka), Gilman Canyon Formation(c. >40 -20ka), Peoria loess(c. 20 -10ka) Brady soil(c. 11 -10ka) Bignell loess(c. 9-\ulcornerka). and mod-ern surface soil. Application of magnetic analyses has provided proxy data sets that represent a time series of climatically regulated pedogenesis/weathering and botanical composition. magetic data have yielded an impression of the variation in climate from Sangamon time to the late Holocene through a reconstruction of the history of pedogenesis/weathering. Sangamon soil formation dominated the reservation durin the Last interglacial as indicated by magnetic parameters. During Gil-man Canyon time loess influx was usually sufficiently slow as to permit pedogenesis which appears to have been at a maximum twice during that time. Warm season grasses were important dur-ing soil formation but diminished in importance during the peri-ods of more rapid loess fall which were cooler and perhaps wet-ter. Peoria loess fall a function of the deterioration of climate during the last Glacial Maximum thinly blanketed the reservation with thickest accumulations occurring to the north-west(Bala Cemetery site)proximal to the source region. Long-term surface stability did not apparently occur within Peoria time but short-term stability may be indicaed by the presence of thin weathering zones(incipient soils) in the Peoria loess. Re-gional landscape stability prevailed during the environmental shift at the Pleistocene/Holocene transition resulting in forma-tion of the well expressed Brady soil. One or more weak soils developed in the Bignell loess as it ac-cumulated. A notable feature of the Bignell loess is the appear-ance of the Altithermal dry period: the loess experienced little weathering and was dominated by warm season grasses until the latter of the Holocene.

  • PDF

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Quaternary Fault Activity of the Yangsan Fault Zone in the Samnam-myeon, Ulju-gun, Ulsan, Korea (울산광역시 울주군 삼남면 일대에 발달한 양산단층대의 제4기 단층운동)

  • Yang, Joo-Seok;Lee, Hee-Kwon
    • Economic and Environmental Geology
    • /
    • v.47 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • We investigated space-time patterns of Quaternary fault activity of the Yangsan fault zone using ESR ages in the Samnam-myeon region, Ulsan, Korea. Some of fault gouge zones consist of well-defined bands which added to the older gouge band, indicative of reactivation. During addition of new bands, the older gouge band was inactive, which represents the type I faulting mode. ESR analyses of each band of the gouge zone allow us to construct history of fault movement. The entire fault gouge zones were reactivated by type III faulting mode giving us ESR ages of the lastest reactivation. ESR dates show temporal clustering into active and inactive periods analogous to historic and paleoseismic fault activities. ESR ages and dates of fault movements indicate migration of fault activities along the Yangsan Fault Zone. Segments of the Quaternary faults in the study area are branched in the south of Sangcheon site. The earliest record of activity in segmented faults is recorded from the western segment to the northern segment. Before 750~850 ka ago, the fault gouge zone from the western segment to the northern segment were active. At 750~850 ka ago, the fault gouge zone from the eastern segment to the northern segment were active. During 630~660 ka and 480~540 ka only the northern segment was active. After 340 ka ago, the fault gouge zone from the western segment to the northern segment were active again.

Distribution Characteristics of Quaternary Geology and Aggregate Resources in Geumsan-gun, Chungcheongnam-do (충청남도 금산군 일대 제4기 지질 및 골재자원 분포 특성)

  • Kim, Jin Cheul;Kim, Ju Yong;Lee, Jin-Young
    • Economic and Environmental Geology
    • /
    • v.54 no.5
    • /
    • pp.595-603
    • /
    • 2021
  • Sand layer distribution, which is the main target of river and land aggregate resources, mainly belongs to alluvial and river sedimentary environments among the Quaternary sedimentary environments. The distribution of aggregate resources in the area of Geumsan-gun, Chungcheongnam-do is characteristically developed around a sedimentation environment in which intrusive meandering river dominate. Although the area around Bonhwangcheon Stream and the area near the confluence of small streams are small, the river floodplain develops and corresponds to the aggregate distribution area. The sedimentary layer formed in the sedimentary environment such as colluvial deposits or alluvial fan deposits has a relatively low distribution rate of aggregate resources. The vertical distribution of the Quaternary sedimentary layers in the Geumsan-gun region ranges from about 5 to 12 m and has an average Quaternary sedimentary thickness of 8 m. The aggregate-bearing section has an average thickness of 3.6 m, and the average grain size is about 21% clay-silt, 67% sand, and 12% gravel. The main characteristics of the aggregate-bearing section are that coarse-grained sand predominates, and gravel is sub-angular or sub-rounded, and the sorting is generally poor and has a massive form of deposits, and the soil colour ranges from dark grey to yellowish-brown. In Geumsan-gun, the most likely distribution area for aggregate development is the alluvial sedimentary and river sedimentary layers distributed along the current and former riverbeds of the main Geumgang River, Bonhwangcheon and small River tributaries.

Plio-Quaternary Seismic Stratigraphy and Depositional History on the Southern Ulleung Basin, East Sea (동해 울릉분지 남부의 플라이오-제4기 탄성파 층서 및 퇴적역사)

  • Joh, Min-Hui;Yoo, Dong-Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.2
    • /
    • pp.90-101
    • /
    • 2009
  • Analysis of multi-channel seismic reflection data from the Southern Ulleung Basin reveals that Plio-Quaternary section in the area consists of nine stacked sedimentary units separated by erosional unconformities. On the southern slope, these sedimentary units are acoustically characterized by chaotic seismic facies without distinct internal reflections, interpreted as debris-flow bodies. Toward the basin floor, the sedimentary units are defined by well-stratified facies with good continuity and strong amplitude, interpreted as turbidite/hemipelagic sediments. The seismic facies distribution suggests that deposition of Plio-Quaternary section in the area was controlled mainly by tectonic movement and sea-level fluctuations. During the Pliocene, sedimentation was mainly controlled by tectonic movements related to the back-arc closure of the East Sea. The back-arc closure that began in the Miocene caused compressional deformation along the southern margin of the Ulleung Basin, resulting in regional uplift which continued until the Pliocene. Large amounts of sediments, eroded from the uplifted crustal blocks, were supplied to the basin, depositing Unit 1 which consists of debris-flow deposits. During the Quaternary, sea-level fluctuations resulted in stacked sedimentary units (2-9) consisting of debris-flow deposits, formed during sea-level fall and lowstands, and thin hemipelagic/turbidite sediments, deposited during sea-level rise and highstands.

Distribution and Origin of Quaternary Mass Transport Deposit in the Ulleung Basin, East Sea (동해 울릉분지 제 4기 질량류 퇴적체 분포 및 기원)

  • Yi, Young-Mi;Yoo, Dong-Geun;Kang, Nyeon-Keon;Yi, Bo-Yeon
    • Geophysics and Geophysical Exploration
    • /
    • v.17 no.2
    • /
    • pp.74-87
    • /
    • 2014
  • Analysis of multi-channel seismic reflection profiles collected from the Ulleung Basin reveals that the Quaternary sequence consists of four stratigraphic units separated by erosional unconformities. Individual stratigraphic unit includes eighteen mass transport deposits which are variable in geometric characteristics and spatial distribution. Each mass transport deposit on the seismic profile is acoustically characterized by chaotic or transparent seismic facies, and shows wedge or lens-shaped external geometry. The mass transport deposits, which comprise a succession of stacked wedges, mainly occur on the southern slope, and their thickness gradually decreases toward the basin plain. The time structure map of erosional unconformities shows that a tectonic-induced structural high and troughs toward the northwest and northeast are developed at the central part of the basin. Based on the isochron map, the mass transport deposits, originated from southern part of the study area, transported to the basin plain and can be divided into two groups by the structural high. Consequently, the mass transport deposits within the Quaternary sequence in the Ulleung Basin are largely controlled by the large amounts of sediment supply, dissociation of gas hydrate during the lowstands, and central structural high.

Coastal erosion and countermeasures of Oahu Island (오아후섬 연안 침식 현상과 대책)

  • Dong-Yoon Yang;Min Han
    • The Korean Journal of Quaternary Research
    • /
    • v.31 no.2
    • /
    • pp.31-42
    • /
    • 2017
  • Oahu Island is the third largest island of the Hawaiian chain which located in the northern hemisphere close to the center of the Pacific Ocean and is affected by storms and tsunamis in the northern and southern hemispheres. High-wave and high-energy waves are concentrated in the winter and summer, and the Oahu Coast is always in an active erosion environment. These natural effects are likely to become more severe with global warming and sea level rise. In addition, as the anthropogenic factors, there was indiscreet flood of development on the coast until the 1972 coastal management law was enacted. However, the present coastal erosion phenomenon was not serious than thought. The cause can be found in the improvement of the coastal management of the provincial government. The Hawaiian government is no longer applying this method, which was built prior to the enactment of the Coastal Control Act, due to increased erosion and side effects at other sites. So, in Hawaii, it is mainly applied to soft revetment methods such as supplying sand or making artificial sand dunes as an erosion prevention method. In Korea, there are some places where the soft revetment method is applied partially, but it is mainly composed of hard revetment structure.

A Preliminary Geomorphic Overview of Late Quaternary Glacier Fluctuations in the South Shetland Islands, West Antarctica (서남극 남쉐틀랜드 군도의 제4기 후기 빙하 활동의 지형학적 고찰)

  • Lim, Hyoun-Soo;Yoon, Ho-Il;Lee, Yong-Il;Kim, Yea-Dong;Owen Lewis A.;Seong, Yeong-Bae
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.5 s.116
    • /
    • pp.513-526
    • /
    • 2006
  • The timing and extent of glaciations during the Late Quaternary in the South Shetland Islands, West Antarctica were defined using field mapping, geomorphic analysis and radiocarbon dating. Landforms of glacial erosion and deposition, in particular subglacial meltwater channel erosion, suggest that at least three glaciations occurred during the late Quaternary within the study region. During the global LGM, glacial troughs (such as Maxwell Bay and Admiralty Bay) were overdeepened by an ice stream moving south from $an\sim1000m-thick$ ice cap centered on the present-day continental shelf to the north. This ice was responsible for the subglacial meltwater channel erosion, and glacial polished and striated bedrock on the Fildes Peninsula. The recent local glaciations occurred about 2,000 years ago and during Little Ice Age (LIA). During these glaciations, glaciers were less extensive than the previous one and less erosive as a cold-based ice

Palaeoenvironmental Implication of the Quaternary Gravel Sequences on the Basis of Gravel Shape (역의 형태에 의한 제4기 역층준의 고환경적 고찰)

  • Ju Yong Kim;Duck Keun Choi
    • The Korean Journal of Quaternary Research
    • /
    • v.4 no.1
    • /
    • pp.41-57
    • /
    • 1990
  • Gravel shapes of the terrace gravel sequences are compared with the present river gravels and beach gravels in the Pohang and its surrounding areas. Seventeen gravel textural parameters are divided into 5 groups based on R-mode factor analysis. Among them, three parameters (RDm, MPSm, SZstd) are selected for a test of discriminant possibility of palaeoenvironment of the terrace gravel deposits. Marine gravels are in the range of 0.49 to 0.75 in mean roundness, 0.46 to 0.78 in mean maximum projection sphericity and 0.39 to 1.85 in standard deviation of size, whereas river gravels are 0.28 to 0.51 in mean roundness, 0.66 to 0.72 in mean maximum projection sphericity and 1.04 to 1.81 in standard deviation of size. For practical access to the palaeoenvironment discrimination, a bivariant diagram between mean roundness and mean maximum projection sphericity is the most effective. The marine terrace gravels are plotted within the variation range of present beach gravels and show 0.49 to 0.71 in mean roundness and 0.59 to 0.66 in mean maximum projection sphericity. The gravels of river terrace vary within the range of gravels derived from present river bed and are characterized as 0.36 to 0.48 in mean roundness and 0.66 to 0.71 in mean maximum projection sphericity.

  • PDF