• Title/Summary/Keyword: The Quaternary

Search Result 1,248, Processing Time 0.032 seconds

The Kinetics of Radical Polymerization of Styrene with Tricaprylymethylammonium Chloride as a Phase-Transfer Catalyst (상이동촉매인 트리카프릴메틸암모니움 클로라이드를 사용한 스티렌 라디칼중합의 동력학적 연구)

  • Park, Sang-Wook;Sohn, In-Joe;Park, Sang-Bo
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • The phase-transfer catalyzed radical polymerization of styrene was carried out using tricaprylylmethylammonium chloride as a phase-transfer catalyst in a two-phase system of an aqueous $Na_2S_2O_8$ solution and toluene at $60^{\circ}C$ under nitrogen atmosphere. The initial rate of radical polymerization was expressed as the combined terms of concentrations of quaternary onium cation and peroxydisulfate anion in the aqueous phase rather than the fed concentrations of catalyst and $Na_2S_2O_8$. The observed initial rate of radical polymerization was used to analyze the radical polymerization mechanism with a cycle phase-transfer initiation step in the heterogeneous liquid-liquid system. The viscosity average molecular weight of polystyrene was inversely proportional to concentration of $Na_2S_2O_8$ expressed as $[Q^+]([S_2O{_8}^{2-}]{\alpha}_2)^{1/2}$ derived by the radical polymerization mechanism.

  • PDF

A Study on Map Mapping of Individual Vehicle Big Data Based on Space (공간 기반의 개별 차량 대용량 정보 맵핑에 관한 연구)

  • Chong, Kyusoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.5
    • /
    • pp.75-82
    • /
    • 2021
  • The number of traffic accidents is about 230,000, and due to non-recurring congestion and high driving speed, the number of deaths per traffic accident on freeways is more than twice compared to other roads. Currently, traffic information is provided based on nodes and links using the centerline of the road, but it does not provide detailed speed information. Recently, installing sensors for vehicles to monitor obstacles and measure location is becoming common not only for autonomous vehicles but also for ordinary vehicles as well. The analysis using large-capacity location-based data from such sensors enables real time service according to processing speed. This study presents an mapping method for individual vehicle data analysis based on space. The processing speed of large-capacity data was increased by using method which applied a quaternary notation basis partition method that splits into two directions of longitude and latitude respectively. As the space partition was processed, the average speed was similar, but the speed standard deviation gradually decreased, and decrease range became smaller after 9th partition.

Investigation of Acid Strength of Hierarchically Structured MFI Zeolites Synthesized by Surfactant-type Structure-directing Agents (계면활성제 타입의 구조유도체를 이용해 합성된 위계다공성 MFI 제올라이트의 산 세기 특성에 관한 연구)

  • Kanghee Cho;Jeong-Chul Kim
    • Journal of Adhesion and Interface
    • /
    • v.25 no.3
    • /
    • pp.75-81
    • /
    • 2024
  • This study analyzes the acid properties of zeolites synthesized through the use of surfactant-based structure-directing agents. To achieve this, zeolites possessing both micropores and mesopores were synthesized using surfactants containing multiple quaternary ammonium molecules. Those surfactants form mesoscale micelles to be mesopores after calcination, while the ammonium moieties direct zeolitic microporous structure. These hierarchical zeolites were then subjected to adsorption of different probe molecules, pyridine, and 2,6-di-tert-butylpyridine, followed by thermal desorption and analysis using FT-IR spectroscopy. The results reveal that unlike conventional zeolites consisting solely of micropores, the hierarchical zeolites exhibit strong acidity not only within the micropores but also on the external surface of the mesopores. This observation suggests the formation of strong acid sites attributed to the hierarchical porous structure induced by surfactant-type structure-directing agents. Consequently, these findings imply potential applications in various catalytic chemical reactions leveraging the surface acidity of zeolites.

Synthesis and Solution Properties of Zwitterionic Copolymer of Acrylamide with 3-[(2-Acrylamido)dimethylammonio]propanesulfonate

  • Xiao, Hui;Hu, Jing;Jin, Shuailin;Li, Rui Hai
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2616-2622
    • /
    • 2013
  • A novel zwitterionic monomer 3-[(2-acrylamido)dimethylammonio]propanesulfonate (DMADAS) was designed and synthesized in this study. Then it was polymerized with acrylamide (AM) by free radical polymerization in 0.5 mol/L NaCl solution with ammonium persulfate ($(NH_4)_2S_2O_8$) and sodium sulfate ($NaHSO_3$) as initiator. The structure and composition of DMADAS and acrylamide-3-[(2-acrylamido)-dimethylammonio]propanesulfonate copolymer (P-AM-DMADAS) were characterized by FT-IR spectroscopy, $^1H$ NMR and elemental analyses. Isoelectric point (IEP) of P-AM-DMADAS was tested by nanoparticle size and potential analyzer. Solution properties of copolymer were studied by reduced viscosity. Antipolyelectrolyte behavior was observed and was found to be enhanced with increasing DMADAS content in copolymer. The results showed that the viscosity of P-AM-DMADAS is 5.472 dl/g in pure water. Electrolyte was added, which weakened the mutual attraction between sulfonic acid group and quaternary ammonium group. The conformation became loose, which led to the increase of reduced viscosity. The ability of monovalent and divalent cation influencing the viscosity of zwitterionic copolymer obeyed the following sequence: $Li^+$ < $Na^+$ < $K^+$, $Mg^{2+}$ < $Ca^{2+}$ < $Ba^{2+}$, and that of anion is in the order: $Cl^-$ < $Br^-$ < $I^-$, $CO{_3}^{2-}$ > $SO{_3}^{2-}{\approx}SO{_4}^{2-}$.

Estimated Bioaccumulation properties of Acetanilide using BCFWIN (BCF WIN을 이용한 Acetanilide의 생물농축특성 평가)

  • Kwon, Min-Jeong;Choi, Yoon-Ho;Song, Sang-Hwan;Park, Hye-Youn;Koo, Hyun-Ju;Park, Kwang-Sik
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.4
    • /
    • pp.223-226
    • /
    • 2001
  • Acetanilide is a High Production Volume Chemical, which is produced about 2,300 tons/year in Korea as of 1998 survey. Most is used as an intermediate for synthesis of pharmaceuticals and dyes. The chemical is one of seven chemicals, which are under the frame of OECD SIDS program sponsored by National Institute of Environmental Research of Korea. Regarding the information on the environmental fate. bioconcentration is one of important factor to estimate the environmental tranfer. However, measurement of bioconcentration needs high expense and time. For this reason, OECD recommends to use BCFWIN model to estimate bioconcentration of organic chemicals, BCFWIN estimates the bioconcentration factor (BCF) of an organic compound using the log octanol-water partition coefficient (Kow) of the compound. Structures are entered into BCFWIN through SMITES (Simplified Molecular Input Line Entry System) notations. The BCFWIN method classifies a compound as either ionic or non-ionic. ionic compounds include carboxylic acids, sulfonic acids and salts of sulfonic acids, and charged nitrogen compounds (nitrogen with a + 5 valence such as quaternary ammonium compounds). All other compounds are classified as non-ionic. In this study, bioaccumulation of acetanilide was estimated using BCFWIN model based on SMIIES notation, chemical name data and partition coefficient as one of environmental fate/distribution of the chemical elements.

  • PDF

Near-surface geophysical studies in the Ulsan Fault Zone of Korea (한국 울산단층대에서의 천부지구물리 연구)

  • Kim, Ki-Young;Kim, Dong-Hoon;Lee, So-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.78-84
    • /
    • 2008
  • Recent earthquakes near nuclear power plants in Korea have triggered public concerns about possible seismicity of the Ulsan Fault Zone in the south-eastern part of the Korean peninsula. To reveal subsurface structures of this fault zone, we conducted high-resolution seismic refraction and reflection surveys, and closely spaced gravity measurements in the Dongchon River valley north of Ulsan, Korea. Here alluvium covers the north-south trending fault zone in a 1-km wide valley. Both source points and receivers were spaced at 5-m intervals for the 24-channel seismic refraction and reflection methods, along two profiles of 835 m and 415 m length. Gravity data were also measured along these profiles at 131 stations using a 10-m interval. Synergetic interpretation of seismic refraction, high-resolution seismic reflection, and gravity surveys across the valley indicates that the Ulsan Fault Zone was formed by apparent north-south strike-slip motions during the Cretaceous, and that some faults may have been reactivated by east-west compressional or transpressional stresses during the Tertiary or Quaternary.

Processing and Characteristics of Pearl Oyster (Pinctada fucata) Extracts (진주조개(Pinctada fucata) 추출물의 가공 및 품질특성)

  • Kang, Jeong-Goo;Kang, Su-Tae;Kang, Jin-Yeong;Nam, Gi-Ho;Lee, Sung-Man;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.343-349
    • /
    • 2007
  • This study examined the effective utilization of pearl processing by-products. Three extracts of hot-water extract (WE), hydro-cooked extract (HE), and two-step enzymatic hydrolysate (EH) were prepared from pearl oyster muscle, and their characteristics were examined. The moisture, crude protein, volatile basic nitrogen (VBN), and amino-N contents were 97.5-98.0%, 0.5-1.3%, 2.1-4.9 g/100 mL, and 35.0-74.5 g/100 mL, respectively. EH had the lowest VBN and highest amino-N contents. In addition, EH had the highest yields. In terms of its functional properties, EH inhibited angiotensin-I converting enzyme ($IC_{50}$, 1.39 mg/mL) more strongly than the other extracts ($IC_{50}$, 4.17-7.95 mg/mL). The free amino acid contents of WE, HE, and EH were 661, 470 and 1,150 mg/100 mL, respectively. Major amino acids were taurine and glutamic acid. Major inorganic ions were Na, Mg, and Ca. Contents of taste compounds, such as free amino acids, inorganic ions, and quaternary ammonium bases, differed significantly according to the extract methods. Based on the results of chemical experiments and sensory evaluation, the quality of EH was superior to the other extracts, and EH is suitable for use in natural flavoring materials.

Development of Novel Pyrrolidine Organocatalyst

  • Im, Seol-Hui;Gang, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.198-198
    • /
    • 2011
  • Organocatalysis is a relatively new and popular area within the field of chiral molecule synthesis. It is one of the main branches of enantioselective synthesis with enzymatic and organometallic catalysis. In recent years, immense high quality studies on catalysis by chiral secondary amines were reported. These progresses instantly led to different organocatalytic activation concepts, so thousands of researchers from academia and the chemical industry are currently involved in this field and new ideas, new approaches, and creative thinking have been rapidly emerged. Organocatalysts, some of which are natural products, appear to solve the problems of metal catalysts. Compared to metal-based catalysis, they have many advantages including savings in cost, time, and energy, easier experimental procedure, and reduction of chemical waste. These benefits originate from the following factors. First, organocatalysts are generally stable in oxygen and water in the atmosphere, there is no need for special equipments or experimental techniques to operate under anhydrous or anaerobic conditions. Second, organic reagents are naturally available from biological materials as single enantiomers that they are easy and cheap to prepare which makes them suitable for small-scale to industrial-scale reactions. Third, in terms of safety related catalysis, small organic molecules are non-toxic and environmentally friendly. Therefore, the purpose of this research is to develop novel synthetic methods and design for various organocatalyst. Furthermore, it is expected that these organocatalysts can be applied to a variety of asymmetric reactions and study the transition state of these reactions using a metal sulface. Here, we report the synthesis of unprecedented organocatalysts, proline and pyrrolidine derivatives with quaternary carbon center.

  • PDF

Volcanic landforms in Korea (한국의 화산지형 연구)

  • Kim, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.4
    • /
    • pp.79-96
    • /
    • 2011
  • Volcanic landforms are classified into the volcanic edifice produced through constructive processes of eruption and the crater generated by destructive processes of eruption. Both landforms are distributed around Korean Peninsula including attaching islands. However, only a few regions such as Mt. Baekdu, Jeju Island, Ulleung Island, and Chugaryeong, which are closely related with the volcanic eruption occurred during the Quaternary, could be considered as a volcanic landform. It results in categorizing the volcanic landform as an unusual topography in Korea. The study of Korean researchers on the volcanic landform were regularized in 1970s on Jeju Island, in 1980s on Ulleung Island, and in 1990s on Mt. Baekdu, respectively. Oreums and lava tubes in Jeju Island have been also examined since 1980s. Compared with other fields of geomorphology, researches as well as researchers on the volcanic landform are very few in Korea. Geomorphologists are expected to perform an active research in that the volcanic landform of Korea have diverse values.

Surface Impregnation of Glycine to Activated Carbon Adsorbents for Dry Capture of Carbon Dioxide

  • Lim, Yun Hui;Adelodun, Adedeji A.;Kim, Dong Woo;Jo, Young Min
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.99-113
    • /
    • 2016
  • In order to improve the portability of basic absorbents monoethanolamine (MEA) and glycine (Gly), both were supported on microporous activated carbon (AC). Chemical modification by alkali-metal ion exchange (of Li, Na, K) was carried out on Gly-based absorbents. All supported absorbents were subjected to $CO_2$ absorption capacity (pure $CO_2$) and selectivity (indoor level) tests. Textural and chemical characterizations were carried out on test sorbents. All impregnation brought about significant reduction of specific surface area and microporosity of the adsorbent Depreciation in the textural properties was found to result to reduction in pure $CO_2$ sorption. Contrarily, low-level $CO_2$ removal capacity was enhanced as the absorbent dosage increases, resulting in supported 5 molar MEA in methanol solution. Adsorption capacities were improved from 0.016 and 0.8 in raw ACs to 1.065 mmol/g for MEA's. Surface chemistry via X-ray photoelectron spectroscopy (XPS) of the supported sorbents showed the presence of amine, pyrrole and quaternary-N. In reducing sequence of potency, pyridine, amine and pyrrolic-N were noticed to contribute significantly to $CO_2$ selective adsorption. Furthermore, the adsorption isotherm study confirms the presence of various SNGs heterogeneously distributed on AC. The adsorption mechanism of the present AC adsorbents favored Freundlich and Langmuir isotherm at lower and higher $CO_2$ concentrations respectively.