미래 예측의 방법은 기술적 특성 또는 기술적 성능으로 예측이 가능할 수 있다. 그러므로 기술예측은 경제적, 사회적 이익을 산출해 낼 수 있는 전략적 연구 분야에서 활용되고 있다. 본 연구에서는 이러한 기술적 특성으로 미래를 예측하는 방법의 연구를 통하여 미래 시장을 예측하였다. 특별한 제품의 수요 욕구에 따라 시장을 점유하는 시점의 예측을 통해 미래 예측 방법을 연구하였다. 시장수요 예측을 위하여 대표적인 계량적 분석 방법인 연평균성장률(CAGR) 모형, BASS 모형, Logistic 모형, 곰페르츠 성장모형(Gompertz Growth Curve) 등의 비교를 통해 미래시장의 수요예측 모형을 제안하였다. 본 연구는 Rogers의 혁신확산 이론을 접목하여 제품이 시장에 확산되는 시점을 예측하였다. 연구결과로 특별한 제품이 시장을 점유하기 위한 다양한 요인들의 확산 시점을 통해 특별한 상품이 미래 시장에서 성숙하는 시점을 예측할 수 있는 방법론을 개발하였다. 그러나 시장을 예측하기 위한 전문가 판단에 대한 오류를 줄이는 것은 한계점이 있다.
This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.
Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.
한우 암소로부터 시간적인 간격을 두고 조사된 체중측정 기록에 대해 기존에 제안된 몇 가지 비선형의 성장곡선 모형을 적용하여 한우 암소의 성장모형을 추정하고, 추정된 성장모형의 모수를 이용하여 한우암소에 대한 성장특성을 규명하기 위해 실시하였다. 각 성장곡선 함수로 추정한 한우 암소 집단의 성장 곡선은 다음과 같다. Gompertz 모형 : $W_t=370.2e^{-2.208e^{-0.00327t}$ von Bertalanffy 모형 : $W_t=388.6(1-0.549e^{-0.00261t})^3$ Logistic 모형 : $W_t=341.2(1+5.652e^{-0.00524t})^{-1}$ 각 모형으로 전체자료를 이용하여 추정한 일반적인 성장곡선의 모수 A(성숙체중), b(성장비) 및 k(성숙률)와 추정된 모수들을 이용하여 변곡점 도달일령, 변곡점에서의 체중 및 변곡점에서의 일당증체량과 각 모형별 오차 제곱합 등을 계산하였는데, 세 모형 중 von Bertalanffy 모형이 성숙체중이 제일 크고(388.6kg), 변곡점 도달일령이 제일 빠르며(191일), 변곡점 도달시 체중이 제일 작고(약 115kg), 오차 제곱합도 제일 작았다(1,1170.9) 그리고 Logistic 모형이 성숙체중이 제일 작고(341.2kg), 변곡점 도달일령이 제일 늦으며(약 330일), 변곡점 도달시 체중이 제일 크고(약 170kg), 오차 제곱합도 제일 컸다(1,287.7). Logistic 모형이 세 모형 중에서 오차 제곱합이 제일 크고 생시와 36개월령에서 실측체중과 적합 체중간의 차이가 제일 큰 반면 von Bertalanffy 모형이 세 모형 중에서 오차 제곱합이 제일 작고 생시와 36개월령에서 실측체중과 적합 체중간의 차이가 제일 작은 결과를 볼 때, 본 연구 자료인 한우 암소의 성장은 von Bertalanffy 모형, Gompertz 모형 그리고 Logistic 모형 순으로 적합도가 좋은 것으로 판단된다.
본 연구는 한우의 체형과 체중이 일령에 따라 어떻게 변화하며, 선발형질인 도체형질과의 상관 또한 체중 및 체형의 변화에 따라 어떠한 형태로 변화하는지 알아보기 위하여 실시하였다. 분석에 이용한 형질은 체중, 체형 및 도체형질을 포함하여 모두 17가지 형질이며 거세우 161두의 자료를 이용하였다. 성장곡선 추정은 logistic 모형을 이용하였고, 추정한 모수를 토대로 변곡일령 및 변곡일령에서의 특성을 다시 계산하였다. 각 형질에 대한 성장곡선 모수를 분석한 결과 좌골폭은 조숙성, 흉위는 만숙성 형질인 것으로 나타났다. 등지방두께에 대한 흉심, 흉폭 및 요각폭의 순위상관계수는 6~24개월까지 꾸준히 증가하는 반면 다른 체형형질들은 18개월령 이후에 감소하는 것으로 나타났다. 본 연구는 표현형 자료에 대한 분석만이 이뤄졌으나, 한우 성장 단계에 따른 유전적 변화를 살펴보기 위해 유전모수 추정과 같은 추가적인 연구가 이뤄진다면 체형형질을 한우개량에 충분히 이용이 가능할 것으로 생각된다.
This research performed strength improvement analysis after evaluating strength characteristics by estimated temperatures to evaluate the real time strength performance of 50 to 80 MPa high performance concrete equipped with heat resistance, and the results are as follows. The lesser W/B and the lesser target slump flow value difference, compression strength was shown to increase, and the more curing temperature becomes, the strength increased accordingly. According to the correlation review result of strength improvement analysis by estimated temperature change performed using logistic analysis model, the compression strength value predicted with logistic curve expression and the compression strength value measured in experiment were shown to have similar correlation, and the strength improvement analysis value by logistic model was shown to be estimated good when W/B is high.
International journal of advanced smart convergence
/
제13권3호
/
pp.80-88
/
2024
Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.
This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.
In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.
In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.