• 제목/요약/키워드: The Logistic Curve

검색결과 335건 처리시간 0.035초

미래 수요시장의 예측 방법론 (Forecasting methodology of future demand market)

  • 오상영
    • 디지털융복합연구
    • /
    • 제18권2호
    • /
    • pp.205-211
    • /
    • 2020
  • 미래 예측의 방법은 기술적 특성 또는 기술적 성능으로 예측이 가능할 수 있다. 그러므로 기술예측은 경제적, 사회적 이익을 산출해 낼 수 있는 전략적 연구 분야에서 활용되고 있다. 본 연구에서는 이러한 기술적 특성으로 미래를 예측하는 방법의 연구를 통하여 미래 시장을 예측하였다. 특별한 제품의 수요 욕구에 따라 시장을 점유하는 시점의 예측을 통해 미래 예측 방법을 연구하였다. 시장수요 예측을 위하여 대표적인 계량적 분석 방법인 연평균성장률(CAGR) 모형, BASS 모형, Logistic 모형, 곰페르츠 성장모형(Gompertz Growth Curve) 등의 비교를 통해 미래시장의 수요예측 모형을 제안하였다. 본 연구는 Rogers의 혁신확산 이론을 접목하여 제품이 시장에 확산되는 시점을 예측하였다. 연구결과로 특별한 제품이 시장을 점유하기 위한 다양한 요인들의 확산 시점을 통해 특별한 상품이 미래 시장에서 성숙하는 시점을 예측할 수 있는 방법론을 개발하였다. 그러나 시장을 예측하기 위한 전문가 판단에 대한 오류를 줄이는 것은 한계점이 있다.

로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로 (Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea)

  • 알-마문;장동호
    • 한국지형학회지
    • /
    • 제23권2호
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

Prediction of Galloping Accidents in Power Transmission Line Using Logistic Regression Analysis

  • Lee, Junghoon;Jung, Ho-Yeon;Koo, J.R.;Yoon, Yoonjin;Jung, Hyung-Jo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.969-980
    • /
    • 2017
  • Galloping is one of the most serious vibration problems in transmission lines. Power lines can be extensively damaged owing to aerodynamic instabilities caused by ice accretion. In this study, the accident probability induced by galloping phenomenon was analyzed using logistic regression analysis. As former studies have generally concluded, main factors considered were local weather factors and physical factors of power delivery systems. Since the number of transmission towers outnumbers the number of weather observatories, interpolation of weather factors, Kriging to be more specific, has been conducted in prior to forming galloping accident estimation model. Physical factors have been provided by Korea Electric Power Corporation, however because of the large number of explanatory variables, variable selection has been conducted, leaving total 11 variables. Before forming estimation model, with 84 provided galloping cases, 840 non-galloped cases were chosen out of 13 billion cases. Prediction model for accidents by galloping has been formed with logistic regression model and validated with 4-fold validation method, corresponding AUC value of ROC curve has been used to assess the discrimination level of estimation models. As the result, logistic regression analysis effectively discriminated the power lines that experienced galloping accidents from those that did not.

한우암소의 성장특성 평가를 위한 성장곡선의 추정 (Estimation of Growth Curve for Evaluation of Growth Characteristics for Hanwoo cows)

  • 이창우;최재관;전기준;나기준;이채영;양부근;김종복
    • Journal of Animal Science and Technology
    • /
    • 제45권4호
    • /
    • pp.509-516
    • /
    • 2003
  • 한우 암소로부터 시간적인 간격을 두고 조사된 체중측정 기록에 대해 기존에 제안된 몇 가지 비선형의 성장곡선 모형을 적용하여 한우 암소의 성장모형을 추정하고, 추정된 성장모형의 모수를 이용하여 한우암소에 대한 성장특성을 규명하기 위해 실시하였다. 각 성장곡선 함수로 추정한 한우 암소 집단의 성장 곡선은 다음과 같다. Gompertz 모형 : $W_t=370.2e^{-2.208e^{-0.00327t}$ von Bertalanffy 모형 : $W_t=388.6(1-0.549e^{-0.00261t})^3$ Logistic 모형 : $W_t=341.2(1+5.652e^{-0.00524t})^{-1}$ 각 모형으로 전체자료를 이용하여 추정한 일반적인 성장곡선의 모수 A(성숙체중), b(성장비) 및 k(성숙률)와 추정된 모수들을 이용하여 변곡점 도달일령, 변곡점에서의 체중 및 변곡점에서의 일당증체량과 각 모형별 오차 제곱합 등을 계산하였는데, 세 모형 중 von Bertalanffy 모형이 성숙체중이 제일 크고(388.6kg), 변곡점 도달일령이 제일 빠르며(191일), 변곡점 도달시 체중이 제일 작고(약 115kg), 오차 제곱합도 제일 작았다(1,1170.9) 그리고 Logistic 모형이 성숙체중이 제일 작고(341.2kg), 변곡점 도달일령이 제일 늦으며(약 330일), 변곡점 도달시 체중이 제일 크고(약 170kg), 오차 제곱합도 제일 컸다(1,287.7). Logistic 모형이 세 모형 중에서 오차 제곱합이 제일 크고 생시와 36개월령에서 실측체중과 적합 체중간의 차이가 제일 큰 반면 von Bertalanffy 모형이 세 모형 중에서 오차 제곱합이 제일 작고 생시와 36개월령에서 실측체중과 적합 체중간의 차이가 제일 작은 결과를 볼 때, 본 연구 자료인 한우 암소의 성장은 von Bertalanffy 모형, Gompertz 모형 그리고 Logistic 모형 순으로 적합도가 좋은 것으로 판단된다.

한우 거세우의 체중 및 체형에 대한 성장곡선 모수 추정 (Estimation of Growth Curve Parameters for Body Weight and Measurements in Castrated Hanwoo (Bostaurus Coreanae))

  • 최태정;서강석;김시동;조광현;최재관;황인호;최호성;박철진
    • Journal of Animal Science and Technology
    • /
    • 제50권5호
    • /
    • pp.601-612
    • /
    • 2008
  • 본 연구는 한우의 체형과 체중이 일령에 따라 어떻게 변화하며, 선발형질인 도체형질과의 상관 또한 체중 및 체형의 변화에 따라 어떠한 형태로 변화하는지 알아보기 위하여 실시하였다. 분석에 이용한 형질은 체중, 체형 및 도체형질을 포함하여 모두 17가지 형질이며 거세우 161두의 자료를 이용하였다. 성장곡선 추정은 logistic 모형을 이용하였고, 추정한 모수를 토대로 변곡일령 및 변곡일령에서의 특성을 다시 계산하였다. 각 형질에 대한 성장곡선 모수를 분석한 결과 좌골폭은 조숙성, 흉위는 만숙성 형질인 것으로 나타났다. 등지방두께에 대한 흉심, 흉폭 및 요각폭의 순위상관계수는 6~24개월까지 꾸준히 증가하는 반면 다른 체형형질들은 18개월령 이후에 감소하는 것으로 나타났다. 본 연구는 표현형 자료에 대한 분석만이 이뤄졌으나, 한우 성장 단계에 따른 유전적 변화를 살펴보기 위해 유전모수 추정과 같은 추가적인 연구가 이뤄진다면 체형형질을 한우개량에 충분히 이용이 가능할 것으로 생각된다.

50~80 MPa급 고성능 콘크리트의 강도증진해석 (Analysis Strength Improvement on 50 to 80 MPa Level High Performance Concrete)

  • 박병관;이주선;장기현;최영화;한민철;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.93-96
    • /
    • 2008
  • This research performed strength improvement analysis after evaluating strength characteristics by estimated temperatures to evaluate the real time strength performance of 50 to 80 MPa high performance concrete equipped with heat resistance, and the results are as follows. The lesser W/B and the lesser target slump flow value difference, compression strength was shown to increase, and the more curing temperature becomes, the strength increased accordingly. According to the correlation review result of strength improvement analysis by estimated temperature change performed using logistic analysis model, the compression strength value predicted with logistic curve expression and the compression strength value measured in experiment were shown to have similar correlation, and the strength improvement analysis value by logistic model was shown to be estimated good when W/B is high.

  • PDF

Identifying the Optimal Machine Learning Algorithm for Breast Cancer Prediction

  • ByungJoo Kim
    • International journal of advanced smart convergence
    • /
    • 제13권3호
    • /
    • pp.80-88
    • /
    • 2024
  • Breast cancer remains a significant global health burden, necessitating accurate and timely detection for improved patient outcomes. Machine learning techniques have demonstrated remarkable potential in assisting breast cancer diagnosis by learning complex patterns from multi-modal patient data. This study comprehensively evaluates several popular machine learning models, including logistic regression, decision trees, random forests, support vector machines (SVMs), naive Bayes, k-nearest neighbors (KNN), XGBoost, and ensemble methods for breast cancer prediction using the Wisconsin Breast Cancer Dataset (WBCD). Through rigorous benchmarking across metrics like accuracy, precision, recall, F1-score, and area under the ROC curve (AUC), we identify the naive Bayes classifier as the top-performing model, achieving an accuracy of 0.974, F1-score of 0.979, and highest AUC of 0.988. Other strong performers include logistic regression, random forests, and XGBoost, with AUC values exceeding 0.95. Our findings showcase the significant potential of machine learning, particularly the robust naive Bayes algorithm, to provide highly accurate and reliable breast cancer screening from fine needle aspirate (FNA) samples, ultimately enabling earlier intervention and optimized treatment strategies.

공간통합 모델을 적용한 암괴류 및 애추 지형 분포가능지 추출 (Extraction of Potential Area for Block Stream and Talus Using Spatial Integration Model)

  • 이성호;장동호
    • 한국지형학회지
    • /
    • 제26권2호
    • /
    • pp.1-14
    • /
    • 2019
  • This study analyzed the relativity between block stream and talus distributions by employing a likelihood ratio approach. Possible distribution sites for each debris slope landform were extracted by applying a spatial integration model, in which we combined fuzzy set model, Bayesian predictive model, and logistic regression model. Moreover, to verify model performance, a success rate curve was prepared by cross-validation. The results showed that elevation, slope, curvature, topographic wetness index, geology, soil drainage, and soil depth were closely related to the debris slope landform sites. In addition, all spatial integration models displayed an accuracy of over 90%. The accuracy of the distribution potential area map of the block stream was highest in the logistic regression model (93.79%). Eventually, the accuracy of the distribution potential area map of the talus was also highest in the logistic regression model (97.02%). We expect that the present results will provide essential data and propose methodologies to improve the performance of efficient and systematic micro-landform studies. Moreover, our research will potentially help to enhance field research and topographic resource management.

고온환경 조건하에서 고로슬래그를 사용한 콘크리트의 압축강도 증진 해석 (Estimation of Compressive Strength of Concrete Using Blast Furnace Slag Subjected to High Temperature Environment)

  • 한민철;신병철
    • 한국환경과학회지
    • /
    • 제16권3호
    • /
    • pp.347-355
    • /
    • 2007
  • In this paper, estimation of the compressive strength of the concrete incorporating blast furnace slag subjected to high temperature was discussed. Ordinary Portland cement and blast furnace slag cement (BSC;30% of blast furnace slag) were used, respectively. Water to binder ratio ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also chosen for the experimental parameters, respectively. At the high temperature, BSC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated latent hydration reaction subjected to high temperature. For the strength estimation, the Logistic model based on maturity equation and the Carino model based on equivalent age were applied to verify the availability of estimation model. It was found that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.

고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석 (Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.