• Title/Summary/Keyword: The Least Squares Method

Search Result 1,469, Processing Time 0.045 seconds

Effect of Sample Preparations on Prediction of Chemical Composition for Corn Silage by Near Infrared Reflectance Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 평가에 미치는 영향)

  • Park Hyung-Soo;Lee Jong-Kyung;Lee Hyo-Won;Hwang Kyung-Jun;Jung Ha-Yeon;Ko Moon-Suck
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.1
    • /
    • pp.53-62
    • /
    • 2006
  • Near infrared reflectance spectroscopy (NIRS) has been increasingly used as a rapid, accurate method of evaluating some chemical compositions in forages. Analysis of forage quality by NIRS usually involves dry ground samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations and spectral math treatments on prediction ability of chemical composition for corn silage by NIRS. A population of 112 corn silage representing a wide range in chemical parameters were used in this investigation. Samples of com silage were scanned at 2nm intervals over the wavelength range 400-2500nm and the optical data recorded as log l/Reflectance(log l/R) and scanned in overt-dried grinding(ODG), liquid nitrogen grinding(LNG) or intact fresh(IF) condition. Samples were analysed for neutral detergent fiber(NDF), acid detergent fiber(ADF), acid detergent lignin(ADL), crude protein(CP) and crude ash content were expressed on a dry-matter(DM) basis. The spectral data were regressed against a range of chemical parameters using modified partial least squares(MPLS) multivariate analysis in conjunction with four spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation(SECV). The results of this study show that NIRS predicted the chemical parameters with very high degree of accuracy(the correlation coefficient of cross validation$(R^2cv)$ range from $0.70{\sim}0.95$) in ODG. The optimum equations were selected on the basis of minimizing the standard error of prediction(SEP). The Optimum sample preparation methods and spectral math treatment were for ADF, the ODG method using 2,10,5 math treatment(SEP = 0.99, $R^2v=0.93$), and for CP, the ODG method using 1,4,4 math treatment(SEP = 0.29. $R^2v=0.91$).

Effect of Sample Preparation on Predicting Chemical Composition and Fermentation Parameters in Italian ryegrass Silages by Near Infrared Spectroscopy (시료 전처리 방법이 근적외선분광법을 이용한 이탈리안 라이그라스 사일리지의 화학적 조성분 및 발효품질 평가에 미치는 영향)

  • Park, Hyung Soo;Lee, Sang Hoon;Choi, Ki Choon;Lim, Young Chul;Kim, Jong Gun;Seo, Sung;Jo, Kyu Chea
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.257-266
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid, accurate method of evaluating some chemical constituents in cereal and dired animal forages. Analysis of forage quality by NIRS usually involves dry grinding samples. Costs might be reduced if samples could be analyzed without drying or grinding. The objective of this study was to investigate effect of sample preparations on prediction ability of chemical composition and fermentation parameter for Italian ryegrass silages by NIRS. A population of 147 Italian ryegrass silages representing a wide range in chemical parameters were used in this investigation. Samples were scanned at 1nm intervals over the wavelength range 680-2500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in oven-dried grinding and fresh ungrinding condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with four spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of minimizing the standard error of cross validation (SECV) and maximizing the correlation coefficient of cross validation (${R^2}_{CV}$). The results of this study show that NIRS predicted the chemical parameters with high degree of accuracy in oven-dried grinding treatment except for moisture contents. Prediction accuracy of the moisture contents was better for fresh ungrinding treatment (SECV 1.37%, $R^2$ 0.96) than for oven-dried grinding treatments (SECV 4.31%, $R^2$ 0.68). Although the statistical indexes for accuracy of the prediction were the lower in fresh ungrinding treatment, fresh treatment may be acceptable when processing is costly or when some changes in component due to the processing are expected. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation parameter of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Evaluation of Feed Values for Imported Hay Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 수입 건초의 사료가치 평가)

  • Park, Hyung Soo;Kim, Ji Hye;Choi, Ki Choon;Oh, Mirae;Lee, Ki-Won;Lee, Bae Hun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.258-263
    • /
    • 2019
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. The objective of this study was to evaluate the potential of NIRS, applied to imported forage, to estimate the moisture and chemical parameters for imported hays. A population of 392 imported hay representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1 nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation(R2) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The R2 and SECV for imported hay calibration were 0.92(SECV 0.61%) for moisture, 0.98(SECV 0.65%) for acid detergent fiber, 0.97(SECV 0.40%) for neutral detergent fiber, 0.99(SECV 0.06%) for crude protein and 0.97(SECV 3.04%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of imported hay in Korea for routine analysis method to evaluate the feed value.

Evaluation of the quality of Italian Ryegrass Silages by Near Infrared Spectroscopy (근적외선 분광법을 이용한 이탈리안 라이그라스 사일리지의 품질 평가)

  • Park, Hyung-Soo;Lee, Sang-Hoon;Choi, Ki-Choon;Lim, Young-Chul;Kim, Jong-Gun;Jo, Kyu-Chea;Choi, Gi-Jun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.301-308
    • /
    • 2012
  • Near infrared reflectance spectroscopy (NIRS) has become increasingly used as a rapid and accurate method of evaluating some chemical compositions in forages. This study was carried out to explore the accuracy of near infrared spectroscopy (NIRS) for the prediction of chemical parameters of Italian ryegrass silages. A population of 267 Italian ryegrass silages representing a wide range in chemical parameters and fermentative characteristics was used in this investigation. Samples of silage were scanned at 2 nm intervals over the wavelength range 680~2,500 nm and the optical data recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected on the basis of the highest coefficients of determination in cross validation ($R^2$) and the lowest standard error of cross validation (SECV). The results of this study showed that NIRS predicted the chemical parameters with very high degree of accuracy. The $R^2$ and SECV were 0.98 (SECV 1.27%) for moisture, 0.88 (SECV 1.26%) for ADF, 0.84 (SECV 2.0%), 0.93 (SECV 0.96%) for CP and 0.78 (SECV 0.56), 0.81 (SECV 0.31%), 0.88 (SECV 1.26%) and 0.82 (SECV 4.46) for pH, lactic acid, TDN and RFV on a dry matter (%), respectively. Results of this experiment showed the possibility of NIRS method to predict the chemical composition and fermentation quality of Italian ryegrass silages as routine analysis method in feeding value evaluation and for farmer advice.

Mathematical Transformation Influencing Accuracy of Near Infrared Spectroscopy (NIRS) Calibrations for the Prediction of Chemical Composition and Fermentation Parameters in Corn Silage (수 처리 방법이 근적외선분광법을 이용한 옥수수 사일리지의 화학적 조성분 및 발효품질의 예측 정확성에 미치는 영향)

  • Park, Hyung-Soo;Kim, Ji-Hye;Choi, Ki-Choon;Kim, Hyeon-Seop
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.1
    • /
    • pp.50-57
    • /
    • 2016
  • This study was conducted to determine the effect of mathematical transformation on near infrared spectroscopy (NIRS) calibrations for the prediction of chemical composition and fermentation parameters in corn silage. Corn silage samples (n=407) were collected from cattle farms and feed companies in Korea between 2014 and 2015. Samples of silage were scanned at 1 nm intervals over the wavelength range of 680~2,500 nm. The optical data were recorded as log 1/Reflectance (log 1/R) and scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares (PLS) multivariate analysis in conjunction with several spectral math treatments to reduce the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation ($R^2{_{cv}}$) and the lowest standard error of cross validation (SECV). Results of this study revealed that the NIRS method could be used to predict chemical constituents accurately (correlation coefficient of cross validation, $R^2{_{cv}}$, ranging from 0.77 to 0.91). The best mathematical treatment for moisture and crude protein (CP) was first-order derivatives (1, 16, 16, and 1, 4, 4), whereas the best mathematical treatment for neutral detergent fiber (NDF) and acid detergent fiber (ADF) was 2, 16, 16. The calibration models for fermentation parameters had lower predictive accuracy than chemical constituents. However, pH and lactic acids were predicted with considerable accuracy ($R^2{_{cv}}$ 0.74 to 0.77). The best mathematical treatment for them was 1, 8, 8 and 2, 16, 16, respectively. Results of this experiment demonstrate that it is possible to use NIRS method to predict the chemical composition and fermentation quality of fresh corn silages as a routine analysis method for feeding value evaluation to give advice to farmers.

Quantification of Protein and Amylose Contents by Near Infrared Reflectance Spectroscopy in Aroma Rice (근적외선 분광분석법을 이용한 향미벼의 아밀로스 및 단백질 정량분석)

  • Kim, Jeong-Soon;Song, Mi-Hee;Choi, Jae-Eul;Lee, Hee-Bong;Ahn, Sang-Nag
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.6
    • /
    • pp.603-610
    • /
    • 2008
  • The principal objective of current study was to evaluate the potential of near infrared reflectance spectroscopy (NIRS) as a non-destructive method for the prediction of the amylose and protein contents of un-hulled and brown rice in broad-based calibration models. The average amylose and protein content of 75 rice accessions were 20.3% and 7.1%, respectively. Additionally, the range of amylose and protein content were 16.6-24.5% and 3.8-9.3%, respectively. In total, 79 rice germplasms representing a wide range of chemical characteristics, variable physical properties, and origins were scanned via NIRS for calibration and validation equations. The un-hulled and brown rice samples evidenced distinctly different patterns in a wavelength range from 1,440 nm to 2,400 nm in the original NIR spectra. The optimal performance calibration model could be obtained by MPLS (modified partial least squares) using the first derivative method (1:4:4:1) for un-hulled rice and the second derivative method (2:4:4:1) for brown rice. The correlation coefficients $(r^2)$ and standard error of calibration (SEC) of protein and amylose contents for the un-hulled rice were 0.86, 2.48, and 0.84, 1.13, respectively. The $r^2$ and SEC of protein and amylose content for brown rice were 0.95, 1.09 and 0.94, 0.42, respectively. The results of this study suggest that the NIRS technique could be utilized as a routine procedure for the quantification of protein and amylose contents in large accessions of un-hulled rice germplasms.

Determination of methamphetamine, 4-hydroxymethamphetamine, amphetamine and 4-hydroxyamphetamine in urine using dilute-and-shoot liquid chromatography-tandem mass spectrometry (시료 희석 주입 LC-MS/MS를 이용한 소변 중 메스암페타민, 4-하이드록시메스암페타민, 암페타민 및 4-하이드록시암페타민 동시 분석)

  • Heo, Bo-Reum;Kwon, NamHee;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • The epidemic of disorders associated with synthetic stimulants, such as methamphetamine (MA) and amphetamine (AP), is a health, social, legal, and financial problem. Owing to the high potential of their abuse and addiction, reliable analytical methods are required to detect and identify MA, AP, and their metabolites in biological samples. Thus, a dilute-and-shoot liquid chromatography-tandem mass spectrophotometry (LC-MS/MS) was developed for simultaneous determination of MA, 4-hydroxymethamphetamine (4HMA), AP, and 4-hydroxyamphetamine (4HA) in urine. Urine sample ($100{\mu}L$) was mixed with $50{\mu}L$ of mobile phase consisting of 0.4 % formic acid and methanol and $50{\mu}L$ of working internal-standard solution. Aliquots of $8{\mu}L$ diluted urine was injected into the LC-MS/MS system. For all analytes, chromatographic separation was performed using a C18 reversed-phase column with gradient elution and a total run time of 5 min. The identification and quantification were performed by multiple reaction monitoring (MRM). Linear least-squares regression was conducted to generate a calibration curve, with $1/x^2$ as the weighting factor. The linear ranges were 2.0-200, 1.0-800, and 10-2500 ng/mL for 4HA and 4HMA, AP, and MA, respectively. The inter- and intraday precisions were within 6.6 %, whereas the inter- and intraday accuracies ranged from -14.9 to 11.3 %. The low limits of quantification were 2.0 ng/mL (4HA and 4HMA), 1.0 ng/mL (AP), and 10 ng/mL (MA). The proposed method exhibited satisfactory selectivity, dilution integrity, matrix effect, and stability, which are required for validation. Moreover, the purification efficiency of high-speed centrifugation was clearly higher than 6-15 % for QC samples (n=5), which was higher than that of the membrane-filtration method. The applicability of the proposed method was tested by forensic analysis of urine samples from drug abusers.

Importance of End User's Feedback Seeking Behavior for Faithful Appropriation of Information Systems in Small and Medium Enterprises (중소기업 환경에서의 합목적적 정보시스템 활용을 위한 최종사용자 피드백 탐색행위의 중요성)

  • Shin, Young-Mee;Lee, Joo-Ryang;Lee, Ho-Geun
    • Asia pacific journal of information systems
    • /
    • v.17 no.4
    • /
    • pp.61-95
    • /
    • 2007
  • Small-and-medium sized enterprises(SMEs) represent quite a large proportion of the industry as a whole in terms of the number of enterprises or employees. However researches on information system so far have focused on large companies, probably because SMEs were not so active in introducing information systems as larger enterprises. SMEs are now increasingly bringing in information systems such as ERP(Enterprise Resource Planning Systems) and some of the companies already entered the stage of ongoing use. Accordingly, researches should deal with the use of information systems by SME s operating under different conditions from large companies. This study examined factors and mechanism inducing faithful appropriation of information systems, in particular integrative systems such as ERP, in view of individuals` active feedback-seeking behavior. There are three factors expected to affect end users` feedback-seeking behavior for faithful appropriation of information systems. They are management support, peer IT champ support, and IT staff support. The main focus of the study is on how these factors affect feedback-seeking behavior and whether the feedback-seeking behavior plays the role of mediator for realizing faithful appropriation of information systems by end users. To examine the research model and the hypotheses, this study employed an empirical method based on a field survey. The survey used measurements mostly employed and verified by previous researches, while some of the measurements had gone through minor modifications for the purpose of the study. The survey respondents are individual employees of SMEs that have been using ERP for one year or longer. To prevent common method bias, Task-Technology Fit items used as the control variable were made to be answered by different respondents. In total, 127 pairs of valid questionnaires were collected and used for the analysis. The PLS(Partial Least Squares) approach to structural equation modeling(PLS-Graph v.3.0) was used as our data analysis strategy because of its ability to model both formative and reflective latent constructs under small-and medium-size samples. The analysis shows Reliability, Construct Validity and Discriminant Validity are appropriate. The path analysis results are as follows; first, the more there is peer IT champ support, the more the end user is likely to show feedback-seeking behavior(path-coefficient=0.230, t=2.28, p<0.05). In other words, if colleagues proficient in information system use recognize the importance of their help, pass on what they have found to be an effective way of using the system or correct others' misuse, ordinary end users will be able to seek feedback on the faithfulness of their appropriation of information system without hesitation, because they know the convenience of getting help. Second, management support encourages ordinary end users to seek more feedback(path-coefficient=0.271, t=3.06, p<0.01) by affecting the end users' perceived value of feedback(path-coefficient=0.401, t=6.01, p<0.01). Management support is far more influential than other factors that when the management of an SME well understands the benefit of ERP, promotes its faithful appropriation and pays attention to employees' satisfaction with the system, employees will make deliberate efforts for faithful appropriation of the system. However, the third factor, IT staff support was found not to be conducive to feedback-seeking behavior from end users(path-coefficient=0.174, t=1.83). This is partly attributable to the fundamental reason that there is little support for end users from IT staff in SMEs. Even when IT staff provides support, end users may find it less important than that from coworkers more familiar with the end users' job. Meanwhile, the more end users seek feedback and attempt to find ways of faithful appropriation of information systems, the more likely the users will be able to deploy the system according to the purpose the system was originally meant for(path-coefficient=0.35, t=2.88, p<0.01). Finally, the mediation effect analysis confirmed the mediation effect of feedback-seeking behavior. By confirming the mediation effect of feedback-seeking behavior, this study draws attention to the importance of feedback-seeking behavior that has long been overlooked in research about information system use. This study also explores the factors that promote feedback-seeking behavior which in result could affect end user`s faithful appropriation of information systems. In addition, this study provides insight about which inducements or resources SMEs should offer to promote individual users' feedback-seeking behavior when formal and sufficient support from IT staff or an outside information system provider is hardly expected. As the study results show, under the business environment of SMEs, help from skilled colleagues and the management plays a critical role. Therefore, SMEs should seriously consider how to utilize skilled peer information system users, while the management should pay keen attention to end users and support them to make the most of information systems.

PERIODIC AND CORRELATION ANALYSES BETWEEN WATER TEMPERATURE AND AIR TEMPERATURE IN THE KOREAN WATERS (韓國 沿岸 水溫 및 氣溫의 週期分析과 相關分析)

  • Kim, Bok-Kee
    • 한국해양학회지
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 1983
  • The study on the periodic and correlation analysis between water temperature and air temperature has beenconducted by oceanographic data obtained from 1923 to 1979 (For 16-51 years) in 6 ststions in the Korean Waters. The periodic and correlation analyses has been examined by method of he Schuster's and the quadratic formula of least squares method, respectively. The results pbtained from the study are as follows; 1. Periodic analysis 1) The yearly difference between max. and mini. fo surface water temperature was 12.77-17.99$^{\circ}C$ (computed value : 11.67-16.64$^{\circ}C$) in offshore waters, and was 15.72-26.33$^{\circ}C$ (computed value : 15.13-25.29$^{\circ}C$) in inshore waters, and that of air temperature was 21.71-28.60$^{\circ}C$ (computed value : 10.50-27.22$^{\circ}C$). 2) The yearly mean of water temperature by station was 11.25-18.78$^{\circ}C$, and that of air temperature was 11.39-16.16$^{\circ}C$. 3) The annual compnent amplitrde of water temperature was 5.72-12.54$^{\circ}C$, and that of air temperature was 10.04-13.49$^{\circ}C$. 4) The semi-annual component amplitude of water temperature was 0.83-1.30$^{\circ}C$, and that of air temperature was 0.72-1.26$^{\circ}C$. 5) The annual component phase of water temperature was 215-228$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in inshore waters and 138-244$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of August) in offshore waters, and that of air temperarture was 212-221$^{\circ}C$ (max. temperature shall be in the first and in the middle ten days of July and in the first tin days of August). 6) The semi-annual component phase of water temperature was 87-110$^{\circ}C$ in offshore waters, and 167-212$^{\circ}C$ in inshore waters, and that of air temperature was 156-189$^{\circ}C$. 2. Correlation analyses of water temperature and air temperature before one month. 1) When the water temperature is in rising time, the quadratic constant of correlation formual was the gradual inreasing type ( constant; 0.010-0.026) in offshore waters, and the gradual decreasing or proportional type (constant; -0.020-0.001) in inshore waters. 2) when the water temperature is in descending time, the quadratic constant of correlation formula was the gradual increasing type (constant: 0.012-0.021) 3) the determination coefficient was 0.964-0.992 at rising time and 0.982-0.999 at descending time of water temperature.

  • PDF

Evaluation of Moisture and Feed Values for Winter Annual Forage Crops Using Near Infrared Reflectance Spectroscopy (근적외선분광법을 이용한 동계사료작물 풀 사료의 수분함량 및 사료가치 평가)

  • Kim, Ji Hea;Lee, Ki Won;Oh, Mirae;Choi, Ki Choon;Yang, Seung Hak;Kim, Won Ho;Park, Hyung Soo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.2
    • /
    • pp.114-120
    • /
    • 2019
  • This study was carried out to explore the accuracy of near infrared spectroscopy(NIRS) for the prediction of moisture content and chemical parameters on winter annual forage crops. A population of 2454 winter annual forages representing a wide range in chemical parameters was used in this study. Samples of forage were scanned at 1nm intervals over the wavelength range 680-2500nm and the optical data was recorded as log 1/Reflectance(log 1/R), which scanned in intact fresh condition. The spectral data were regressed against a range of chemical parameters using partial least squares(PLS) multivariate analysis in conjunction with spectral math treatments to reduced the effect of extraneous noise. The optimum calibrations were selected based on the highest coefficients of determination in cross validation($R^2$) and the lowest standard error of cross-validation(SECV). The results of this study showed that NIRS calibration model to predict the moisture contents and chemical parameters had very high degree of accuracy except for barely. The $R^2$ and SECV for integrated winter annual forages calibration were 0.99(SECV 1.59%) for moisture, 0.89(SECV 1.15%) for acid detergent fiber, 0.86(SECV 1.43%) for neutral detergent fiber, 0.93(SECV 0.61%) for crude protein, 0.90(SECV 0.45%) for crude ash, and 0.82(SECV 3.76%) for relative feed value on a dry matter(%), respectively. Results of this experiment showed the possibility of NIRS method to predict the moisture and chemical composition of winter annual forage for routine analysis method to evaluate the feed value.