• Title/Summary/Keyword: The Law of Inertia

Search Result 61, Processing Time 0.022 seconds

Speed controller study of Switched Reluctance Motor using An Adaptive Backstepping Control (적응 백스텝핑 제어를 이용한 스위치드 릴럭턴스 전동기 속도제어기 연구)

  • Oh Juhwan;Lee Jinwoo;Kwon Byungil
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.821-823
    • /
    • 2004
  • In this paper, a backstepping speed controller applied in SRM is presented. The driver of SRM is generally planned with a PI controller. A PI controller is becomes a satisfied structure in the system. it is used in position and speed control loops. However, when the system parameter uncertainties large inertia and load disturbance, it will not be able to expect a satisfied efficiency. Therefore, a backstepping control law was researched, which is able application even to a linear system as well as a nonlinear and it is more excellent than a origin adaptive control law. In this paper, a backstepping control law applied the drive system of SRM was used in the drive controller. The computer simulation result clearly show that the applied backstepping controller can track the speed reference signal generated by internal signals.

  • PDF

Analysis of control characteristics for high speed rolling guided missile with one axis steering fin (1축 날개 조종형 고속회전 유도탄의 조정 특성 해석)

  • Chin, Jong-Sok;Lee, Jae-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 1996
  • It is difficult to analyze the high speed rolling missile with the generally used missile body fixed coordinates. In this study, we formulate the dynamic equations of the high speed rolling missile with the principal axis of inertia, and make the analytical model of one axis steering missile using pitch/yaw symmetry and complex summation method. With this model we analyze the control characteristics and propose the design considerations of high speed rolling missile with one axis control fin using PNG law in conjuntion with a seeker signal.

  • PDF

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.3
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

Nonlinear Nutation Control of Spacecraft Using Two Momentum Wheels

  • Seo, In Ho;Kim, Jong Myeong;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.99-107
    • /
    • 2017
  • In this work, the nutation control of rigid spacecraft with only two momentum wheels is addressed by applying the feedback linearization technique. In this strategy, the primary performance index is to regulate the nutational angle by the momentum control of wheels. The spacecraft attitude equations of motion are transformed to a general linearized form by feedback linearization technique, including a guaranteed control law promising the internal dynamics stability to accomplish the nutation angle small. It is proven that the configuration of inertia properties plays a key role in analyzing spacecraft energy level. The behavior of the momentum wheels is also studied analytically and numerically. Finally, the effectiveness of the proposed nonlinear control law for the momentum transfer is verified by conducting numerical simulations.

Pre-Service Elementary Teachers' Views on 'Action and Reaction': Focused on their Understandings and Typically-Perceived-Situations (TPS) (초등예비교사의 '작용과 반작용' 개념 -이해 정도와 전형적 인식상황 분석을 중심으로-)

  • Joung, Yong Jae
    • Journal of The Korean Association For Science Education
    • /
    • v.36 no.6
    • /
    • pp.851-866
    • /
    • 2016
  • The purpose of this study is to investigate pre-service elementary teachers' views of the law of action-reaction by examining their degrees of understanding and Typically-Perceived-Situations (TPS). Data were collected from 177 Grade 3 pre-service elementary teachers. The results of analyzing these data show: First, the participants did not sufficiently understand about the law of action-reaction, and their degrees of understanding were different depending on the situation provided in the questionnaire. Second, in relation to the TPSs of the law of action-reaction, the participants thought of irrelevant situations to the law of action-reaction such as "a situation generated by inertia" as well as commonly relevant ones such as "a person pushing a wall", and had somewhat biased TPSs in terms of 'action type' and 'result motion type' of action-reaction. Finally, several suggestions on the science education for promotion of understanding about the law of action-reaction were given.

Free axial vibration analysis of axially functionally graded thick nanorods using nonlocal Bishop's theory

  • Nazemnezhad, Reza;Kamali, Kamran
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.749-758
    • /
    • 2018
  • Free axial vibration of axially functionally graded (AFG) nanorods is studied by focusing on the inertia of lateral motions and shear stiffness effects. To this end, Bishop's theory considering the inertia of the lateral motions and shear stiffness effects and the nonlocal theory considering the small scale effect are used. The material properties are assumed to change continuously through the length of the AFG nanorod according to a power-law distribution. Then, nonlocal governing equation of motion and boundary conditions are derived by implementing the Hamilton's principle. The governing equation is solved using the harmonic differential quadrature method (HDQM), After that, the first five axial natural frequencies of the AFG nanorod with clamped-clamped end condition are obtained. In the next step, effects of various parameters like the length of the AFG nanorod, the diameter of the AFG nanorod, material properties, and the nonlocal parameter value on natural frequencies are investigated. Results of the present study can be useful in more accurate design of nano-electro-mechanical systems in which nanotubes are used.

Numerical investigations on anchor channels under quasi-static and high rate loadings - Case of concrete edge breakout failure

  • Kusum Saini;Akanshu Sharma;Vasant A. Matsagar
    • Computers and Concrete
    • /
    • v.32 no.5
    • /
    • pp.499-511
    • /
    • 2023
  • Anchor channels are commonly used for façade, tunnel, and structural connections. These connections encounter various types of loadings during their service life, including high rate or impact loading. For anchor channels that are placed close and parallel to an edge and loaded in shear perpendicular to and towards the edge, the failure is often governed by concrete edge breakout. This study investigates the transverse shear behavior of the anchor channels under quasi-static and high rate loadings using a numerical approach (3D finite element analysis) utilizing a rate-sensitive microplane model for concrete as constitutive law. Following the validation of the numerical model against a test performed under quasi-static loading, the rate-sensitive static, and rate-sensitive dynamic analyses are performed for various displacement loading rates varying from moderately high to impact. The increment in resistance due to the high loading rate is evaluated using the dynamic increase factor (DIF). Furthermore, it is shown that the failure mode of the anchor channel changes from global concrete edge failure to local concrete crushing due to the activation of structural inertia at high displacement loading rates. The research outcomes could be valuable for application in various types of connection systems where a high rate of loading is expected.

Embedded Kalman Filter Design Using FPGA for Estimating Acceleration of a Time-Delayed Controller for a Robot Arm (로봇 팔의 시간지연제어기의 가속도 평가를 위한 Kalman 필터의 FPGA 임베디드 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • In this paper, an embedded Kalman filter for a time-delayed controller is designed on an FPGA to estimate accelerations of the robot arm. When the time-delayed controller is used as a controller, the inertia estimation along with accelerations is needed to form the control law. Although the time-delayed controller is known to be robust to cancel out uncertainties in the nonlinear systems, performances are very much dependent upon estimating the acceleration term ${\ddot{q}}(t-{\lambda})$ along with inertia estimation ${\hat{D}}(t-{\lambda})$. Estimating accelerations using the finite difference method is quite simple, but the accuracy of estimation is poor specially when the robot moves slowly. To estimate accelerations more accurately, various filters such as the least square fit filter and the Kalman filter are introduced and implemented on an FPGA chip. Experimental studies of following the desired trajectory are conducted to show the performance of the controller. Performances of different filters are investigated experimentally and compared.

Hack's Law and the Geometric Properties of Catchment Plan-form (Hack의 법칙과 집수평면의 기하학적 특성)

  • Kim, Joo-Cheol;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.691-702
    • /
    • 2009
  • This study makes a systematic approach to Hack's law considering self-affinity and self-similarity of natural basins as well as the elongation of corresponding catchment-plan forms. Catchment-plan forms extracted from DEM appear to be the population come from the interactions of 2 hypotheses on Hack's law. It is judged that the elongation measures based on inertia moments are more intuitive than the ones based on main channel lengths. The exponent of Hack's law, h, seems to be similar to the result of Gray's study (1961). However Hurst exponent, H, being 0.96 imply that catchment-plan forms considered in this study have isotropic increasing properties with scale. From this point of view it is inferred that the shapes of the basins in this study would be more affected from self-similarity of main channel lengths than self-affinity of catchment-plan forms.

Fatigue Life Prediction of the Carrier of Slewing Reducer for Tower Crane (타워크레인용 선회감속기의 캐리어 피로 수명 예측)

  • Cho, Seung-Je;Park, Young-Jun;Han, Jeong-Woo;Lee, Geun-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.131-140
    • /
    • 2015
  • The purpose of this study is to predict the fatigue life of a planet carrier of a slewing reducer for a tower crane. To predict the fatigue life of the carrier, the inertia endurance test was carried out, and then the input torque profile for the reducer was obtained. The load profile acting on the planet pins that assembled the carrier was calculated from the measured input torque profile using commercial gearbox analysis software. The stress profiles of the carrier weak points were analyzed from the calculated load profile and boundary conditions using commercial FE software, and the stress cycles were determined using the rainflow counting method. Finally, the fatigue life of the carrier was predicted using the equivalent stress range by considering the effect of mean stress, and an S-N curve was drawn up using the GL guideline and the cumulative damage law.