• Title/Summary/Keyword: The Institute of Mechanical Institute

Search Result 20,772, Processing Time 0.066 seconds

Development of open-top microfluidic chip for visualization of interactions between tumoroids and angiogenic sprouting (튜머로이드-혈관신생 상호작용의 가시화를 위한 개방형 구조 미세유체 칩 개발)

  • Kim, Seunggyu;Kim, Jiwon;Park, Joonha;Oh, Sangyoon;Shin, Jennifer H.;Jeon, Jessie S.
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.84-89
    • /
    • 2020
  • Cancer cells secrete angiogenic factors, and nearby vasculatures make new blood vessels essential for cancer development and metastasis in response to these soluble factors. Many efforts have been made to elucidate cancer-endothelial cell interactions in vitro. However, not much is known due to the lack of a suitable co-culture platform. Here, we introduce a 3D printing-based microfluidic system that mimics the in vivo-like cancer-endothelial cell interactions. The tumoroids and endothelial cells are co-cultured, physically separated by porous fibrin gel, allowing communication between two cell types through soluble factors. Using this microfluidic system, we were able to visualize new vessel formation induced by tumoroids of different origins, including liver, breast, and ovary. We confirmed that the ovarian tumoroids most induced angiogenesis while the other two cancer types suppressed it. Utilization of the proposed co-culture platform will help the researchers unveil the underlying mechanisms of the dynamic interplay between tumor and angiogenesis.

Design of Safe Autonomous Navigation System for Deployable Bio-inspired Robot (전개형 생체모방로봇을 위한 안전한 자율주행시스템 설계)

  • Choi, Keun Ha;Han, Sang Kwon;Lee, Jinyi;Lee, Jin Woo;Ahn, Jung Do;Kim, Kyung-Soo;Kim, Soohyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.456-462
    • /
    • 2014
  • In this paper, we present a deployable bio-inspired robot called the Pillbot-light, which utilizes a safe autonomous navigation system. The Pillbot-light is mounted the station robot, and can be operated in a disaster relief operation or military operation. However, the Pilbot-light has a challenge to navigate autonomously because the Pilbot-light cannot be equipped with various sensors. As a result, we propose a new robot system for autonomous navigation that the station robot controls Pillbot-light equipped with vision camera and CPU of high performance. This system detects obstacles based on the edge extraction using vision camera. Also, it cannot only achieve path planning using the hazard cost function, but also localization using the Particle Filter. And this system is verified by simulation and experiment.

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • v.27 no.6
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.

Preliminary Round Robin Test(RRT) for Program for the Inspection of Nickel Alloy Components(PINC) - Reactor Vessel Head Penetration (RVHP) -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Song, Myung-Ho;Chung, Hae-Dong;Kim, Yong-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.256-263
    • /
    • 2009
  • After several PWSCCs were found in Bugey(France), Ringhals(Sweden), Tihange(Belgium), Oconee, Arkansas, Crystal Fever, Davis-Basse, VC Summer(U.S.A.), Thuruga(Japan), USNRC and PNNL started the research on PWSCC, that is, the PINC project. USNRC required KINS to participate in the PINC project in May 2005. KINS organized the Korean consortium at March 2006 and Pre-RRT for RVHP were performed for the preparation of PINC RRT. Through these preliminary RRT, Korea NDE teams can learn and develop the detection and sizing technique for RVHP dissimilar metal weld. These techniques are now being prepared in Korea and need to be utilized for the In-service inspection of the RVHP and BMI of Korea Nuclear Power Plants. PINC RRT mock-ups will be helpful to training.

Fabrication of Roll-Printed Organic Thin-Film Transistors using Patterned Polymer Stamp

  • Jo, Jeong-Dai;Yu, Jong-Su;Kim, Dong-Soo;Kim, Kwang-Young;Lee, Eung-Sug
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.243-246
    • /
    • 2008
  • Roll-printed organic thin-film transistors (OTFTs) were fabricated by gravure or flexography printing using patterned PDMS stamp with various channel lengths, silver pastes, coated polyvinylphenol dielectric, and jetted bis(triisopropyl-silylethynyl) pentacene semiconductor on plastic substrates. The roll-printed OTFT parameters were obtained: fieldeffect mobility of $0.1\;cm^2/Vs$, an on/off current ratio of $10^4$ and a subthreshold slope of 2.53 V/decade.

  • PDF

Joining of the Sinter Hardening Pully by Sinter Brazing

  • Cheng, Chao-Hsu;Lin, Yi-Ching;Lin, Yan-Cherng;Hwang, Lih-Ren
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1002-1003
    • /
    • 2006
  • This research mainly focuses on the development of sinter brazing technology for improving the process related to belt pulley made by sinter hardening. As the machine process of belt pulley takes up more than half of the total manufacturing hours, we propose changing the process to pulley groove brazed and bonded with pulley disc by applying sinter brazing to belt pulley. With the new process, the belt pulley is expected to reduce manufacturing cost to 70% of the original process by applying the sinter brazing technology; and the belt pulley bound by sinter brazing only loses 10% bonding strength compared with the original process.

  • PDF

Engineering of Bi-/Mono-layer Graphene Film Using Reactive Ion Etching

  • Irannejad, M.;Alyalak, W.;Burzhuev, S.;Brzezinski, A.;Yavuz, M.;Cui, B.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.169-172
    • /
    • 2015
  • Although, there are several research studies on the engineering of the graphene layers using different etching techniques, there is not any comprehensive study on the effects of using different etching masks in the reactive ion etching (RIE) method on the quality and uniformity of the etched graphene films. This study investigated the effects of using polystyrene and conventional photolithography resist as a etching mask on the engineering of the number of graphene layers, using RIE. The effects were studied using Raman spectroscopy. This analysis indicated that the photo-resist mask is better than the polystyrene mask because of its lower post processing effects on the graphene surface during the RIE process. A single layer graphene was achieved from a bi-layer graphene after 3 s of the RIE process using oxygen plasma, and the bi-layer graphene was successfully etched after 6 s of the RIE process. The bilayer etching time was significantly smaller than reported values for graphene flakes in previous research.