• Title/Summary/Keyword: The Han River Basin

Search Result 569, Processing Time 0.026 seconds

Assessment of Spatiotemporal Water Quality Variation Using Multivariate Statistical Techniques: A Case Study of the Imjin River Basin, Korea (다변량 통계기법을 이용한 시·공간적 수질변화의 평가: 임진강유역에 관한 연구)

  • Cho, Yong-Chul;Lee, Su-Woong;Ryu, In-Gu;Yu, Soon-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.11
    • /
    • pp.641-649
    • /
    • 2017
  • In the study, the water quality of the Imjin River basin with pollutants of changing characteristics it was determined through statistical analysis, correlation analysis, principle component and factor analysis, and cluster analysis. Among all analyzed data points, the average water quality concentration at the Sincheon 3 site shows high levels of BOD 13.4 mg/L, COD 19.9 mg/L, T-N 11.145 mg/L, T-P 0.336 mg/L, TOC 14.2 mg/L, indicating that Sincheon basin requires intersive water quality management out of the entire drainage basin. The correlational analysis of comprehensive water quality data shows statistically significant correlation between COD, TOC, BOD, T-N water quality factors, as well as finding of high correlation between organic and nutrients. The principal component analysis show that 2 main components being extracted at 81.221% from the measuring station's entire data, while seasonal data show 3 main components being extracted at 96.241%. Factor analysis of the entire data set and the seasonal data identify BOD, COD, T-N, T-P, TOC as the common factors influencing water quality. The spatial and temporal cluster analysis showed 4 groups and 3 groups, respectively, according to seasonal characteristics and land use. By analysing the water quality factors for the Imjin River basins over an 8 year period, with consideration to the spatial and temporal characteristics, this study will become the fundamental analytic data that will help understand the future changes of water quality in the Imjin River basin.

Return Flow Rate Estimation of Irrigation for Paddy Culture in Chuncheon Region of the North Han River Basin (북한강 유역 춘천지역의 논 농업용수 회귀율 산정)

  • Choi Joong-Dae;Choi Ye-Hwan
    • KCID journal
    • /
    • v.9 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • Return flow rate of agricultural irrigation for rice culture was investigated in the North Han river basin, Two small paddy watersheds were chosen and irrigation, drainage, infiltration and evapotranspiration were monitored and estimated during the irriga

  • PDF

Agricultural Land Use and Groundwater Quality of an Alluvial Watershed in the North Han River Basin (북한강 수계 충적평야 지역 토지이용과 지하수 수질간의 관계)

  • Choi Joong-dae;Ryu Soon-ho
    • KCID journal
    • /
    • v.7 no.2
    • /
    • pp.57-65
    • /
    • 2000
  • The effect of land use of an alluvial watershed in the upper North Han river basin on groundwater quality were investigated. Existing 20 farm wells were selected as monitoring wells representing different land uses of residential, arable(paddy and field),

  • PDF

Cooperative Framework for Conflict Mitigation and Shared Use of South-North Korean Transboundary Rivers (남북한 공유하천의 갈등해소와 공동이용을 위한 협력체계)

  • Lee, Gwang Man;Kang, Boosik;Hong, Il-Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5B
    • /
    • pp.505-514
    • /
    • 2008
  • The Imjin and North Han River are sharing watershed between South and North Korea. In Imjin river basin, the April 5th dam and Hwanggang dam which are already constructed or on constrution, causes problems in water supply in the downstrean area. At the same time, in the North Han River basin, the Imnam dam is being operated for diversion to Anbyeon Youngman Hydropower Plant and it gives rise to conflict between South and North by reducing streamflow in the North Han River of South Korean side. Therefore, a cooperative framework needs to be built for settling the pending issues. In this study, based on the theory of conflict resolution in the international shared river basin, the practical alternatives are suggested. These approaches are expected to help in preparing reasonable resolution ahead of seeking political decision. Also, in order to preparing consistent and reasonable river management measures, the South-North shared river management commission was suggested.

Groundwater Resources of Gum-Ho River Basin (금호강유역(琴湖江流域) 지하수대(地下水帶)에 관한 연구(硏究))

  • Han, Jeong Sang
    • Economic and Environmental Geology
    • /
    • v.11 no.3
    • /
    • pp.99-108
    • /
    • 1978
  • The Gum-Ho river basin is one of the densely populated area having more than 35% of the total population and it was also well irrigated since earlier days in the Nackdong river basin. Most of the easily developed source of surface water are fully utilized, and at this moment the basin is at the stage that no more :surface water can be made available under the present rapid development of economic condition. Since surface water supplies from the basin have become more difficult to obtain, the ground water resources must be thoroughly investigated and utilized greatly hereafter. In economic ground of the basin what part could ground water play? In what quantities and, for what uses could it be put? The answer to these questions can be relatively simple;the ground water resources in the basin can be put at almost any desired use and almost anywhere in the basin The area of the basin is at about $2088km^2$ in the middle part of Nackdong river basin and it is located along the Seoul-Pusan express highway. The mean annual rainfall is about 974.7mm, most of which falls from June to September during the monsoon. Accumulated is appeared approximately after every 8 year's accumlated dry period with the duration of 5 years. The water bearing formation in the basin include unconsolidated alluvial deposits in Age of Quaternary, saprolite derived from weathered crystalline rocks, Gyongsang sedimentary formations of the period from late Jurassic to Cretaceouse, and igneouse rocks ranging of the Age from Mesozoic to Cenozoic. The most productive ground water reservoir in the basin is calcareous shale and sandstones of Gyongsang system, which occupies about 66% of the total area. The results of aquifer test on Gyongsang sedimentary formation show that average pumping capacity of a well drilled into the formation with drilling diameter and average depth of $8{\frac{1}{2}}$ inch and 136m is $738m^3/day$ and also average specific capacity of those well is estimated $77.8m^3/D/M$. Total amount of the ground water reserved in the basin is approximately estimated at 37 billion metric tons, being equivalent 18 years total precipitations, among which 7 billion metric tons of portable ground water can be easily utilized in depth of 200 meters.

  • PDF

Genetic Diversity and Population Genetic Structure of Black-spotted Pond Frog (Pelophylax nigromaculatus) Distributed in South Korean River Basins

  • Park, Jun-Kyu;Yoo, Nakyung;Do, Yuno
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.2
    • /
    • pp.120-128
    • /
    • 2021
  • The objective of this study was to analyze the genotype of black-spotted pond frog (Pelophylax nigromaculatus) using seven microsatellite loci to quantify its genetic diversity and population structure throughout the spatial scale of basins of Han, Geum, Yeongsan, and Nakdong Rivers in South Korea. Genetic diversities in these four areas were compared using diversity index and inbreeding coefficient obtained from the number and frequency of alleles as well as heterozygosity. Additionally, the population structure was confirmed with population differentiation, Nei's genetic distance, multivariate analysis, and Bayesian clustering analysis. Interestingly, a negative genetic diversity pattern was observed in the Han River basin, indicating possible recent habitat disturbances or population declines. In contrast, a positive genetic diversity pattern was found for the population in the Nakdong River basin that had remained the most stable. Results of population structure suggested that populations of black-spotted pond frogs distributed in these four river basins were genetically independent. In particular, the population of the Nakdong River basin had the greatest genetic distance, indicating that it might have originated from an independent population. These results support the use of genetics in addition to designations strictly based on geographic stream areas to define the spatial scale of populations for management and conservation practices.

Conversion Factors for Ten-Day Irrigation Duties of Paddy Rice in the Han River Basin (한강수계 논의 순별 단위용수량 변환계수)

  • 강문성;박승우;김현준;강민구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.6
    • /
    • pp.45-55
    • /
    • 2000
  • Seasonal water requirements by paddy rice is important to water budgeting for the water resources planning at a basin scale. This paper compares the water requirements resulting from different approaches for the Han River Basin. The demands from the drought years of 1967 and 1968 were found to be significantly less than the irrigation standards. This may result in significant underestimation of the basin-wide water demands. A conversion factor method is proposed to define seasonal irrigation demands. The factor is defined from the ratios of the standards for each growing stage to the drought year demands. The results were compared satisfactorily with those from the irrigation standards, and readily applicable to the water resources planning.

  • PDF

Oxygen and Hydrogen Isotopic Compositions of Stream Waters in the Han River Basin (한강 수계 분지내 하천수의 산소, 수소 안정동위원소 조성)

  • 김규한;이세희
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.113-120
    • /
    • 2002
  • Oxygen and hydrogen isotopic compositions of stream water in the Han river basin are expressed by the equation of $\delta$D=6.6$\delta$$^{18}$ O-7.4, which is not satisfy the meteoric water line ($\delta$D=8$\delta$$^{18}$ O+10). It might be depended on the local climatic condition and the evaporation effect in the Han river basin. The $\delta$$^{18}$ O and $\delta$D values of stream water in the Han river basin range from -8.2 to -10$\textperthousand$ (avg. -9.1$\textperthousand$) and -60 to -96$\textperthousand$ (avg. -69$\textperthousand$), respectively. The stream water from the South Han river (8$\delta$$^{18}$ O= -8.9~ -10$\textperthousand$, avg.-9.3$\textperthousand$ $\delta$D: -66~ -96$\textperthousand$, avg.-69$\textperthousand$) is slightly more depleted in $^{18}$ O and D than those of North Han river ($\textperthousand$$^{18}$ O= -8.4~ -9.7$\textperthousand$, avg. -9.2$\textperthousand$, $\delta$D= -64~ -95$\textperthousand$, avg. -69$\textperthousand$). It reflects more altitude effect than the effect of latitude and Inflow of the $^{18}$ O eniched S $O_4$$^{2-}$ and HC $O_3$- from the carbonate rock and sulfide minerals in the Taebagsan and Hwanggangri mineralized zone. The Main stream water of the Han river having $\delta$D: -60~ -76$\textperthousand$ (avg.-68$\textperthousand$) and $\textperthousand$$^{18}$ O= -8.2~-10$\textperthousand$ (avg.9.0$\textperthousand$) is enriched in $^{18}$ O compared to the South and North Han river waters, which is caused by the evaporation effect. Binary simple mixing ratio of the Main Han river water between South and North Han river waters was obtained to be 6 : 4 by the isotopic data, suggesting a strong influence of South Han river water to the Main Han river water.

Evaluation of instream flow in Han river according to the Imnam dam operation in North Korea (북한 임남댐 운영에 따른 북한강 하천유지유량 평가)

  • Lee, Jae-Kyoung;Jang, Suk Hwan;Ihm, Nam-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.1
    • /
    • pp.71-82
    • /
    • 2020
  • The objective of this study is to evaluate the instream flow in the North Han River basin according to the operation of Imnam Dam in North Korea. The water budget and instream flow satisfaction were analyzed using hourly, daily and monthly data of Water Management Information System (WAMIS) from Jan. 1991 to Dec. 2018. As a analysis result of water budget using hourly data in the North Han River basin, although inflows compared with dam release in the upstream basin of Peace Dam-Hwacheon Dam and Chuncheon Dam-Soyanggang Dam-Uiam Dam were calculated as negative values, the reasonable results using daily and monthly average data were estimated. It showed that the results of water budget analysis of dam inflow and total release may be different by time units of data. The monthly average inflow of Hwacheon Dam decreased significantly after the construction in 2003 of Imnam Dam, which confirmed that the operation of Imnam Dam had a significant effect on the dams in the North Han River basin. The operation of Imnam Dam is one of the main reasons for the lack of instream flow and total shortage amounts and shortage period increased up to +330% due to the decrease in inflow and total release of dams in the North Han River water after the operation of Imnam Dam. It is necessary to study various plans to secure instream flow including transboundary river management

Assessment of Water Management Efficiencies for Irrigation Pumping Stations in the Han River and Nakdong River Basins (한강 및 낙동강 유역의 양수장 지구 물관리효율 평가)

  • Kim, Hyeon-Jun;Kim, Chul-Gyum;kim, Sung
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.1
    • /
    • pp.23-32
    • /
    • 2003
  • The objective of this study is assessing water management efficiency using water withdrawals from rivers and water requirements for paddies. The water management efficiency was defined by the ratio of water requirements and water withdrawals. Water withdrawals were estimated using the operating times and pumping capacity of the pumping stations from 1992 to 1999 in the Han River and Nakdong River basins. Water requirements were estimated by adding the evapotranspiration of the crops and infiltrations in the irrigated area. Evapotranspiration from the paddies was calculated by the FAO modified Penman method with observed daily weather data. The monthly water management efficiency was analyzed for each pumping stations and the district offices of KARICO (Korea Agricultural and Rural Infrastructure Corporation). The efficiencies of 59 pumping stations in the Han River basin varied from 19% to 135%, and the average was 61%. The efficiencies of 146 pumping stations in the Nakdong River basin ranged from 17% to 190%, and the average was 72%. There were no good correlations between the water management efficiency and pump capacity or irrigated area, it showed that the water management efficiency was affected by the traditional water management practices rather than the scale of irrigation district.