• Title/Summary/Keyword: The Gab-cheon River

Search Result 4, Processing Time 0.025 seconds

Identification of pollutant sources and evaluation of water quality improvement alternatives of the Geum river

  • shiferaw, Natnael;Kim, Jaeyoung;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.475-475
    • /
    • 2022
  • The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.

  • PDF

Analysis on Trends and Major Impact Factors of Water Quality Dynamics in the Gab-Cheon River, Daejeon, Korea (대전 갑천의 수질변화 경향 및 주요 수질 영향 인자 분석)

  • Lee, Gayoung;Seo, Dongil
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.9
    • /
    • pp.517-525
    • /
    • 2015
  • This study analyzes water quality change trends in three major rivers in Daejeon and effect of discharge from Daejeon Wastewater Treatment Plant between 1992 and 2014. As of 2014, COD concentration in the Gab-cheon-A station is in level VI for Korea river water quality standard while BOD and TP are in level III. As expansions of the treatment plant, water quality in the Gab-cheon River has been improving accordingly. However, during the study period, TN concentrations of the headwater and the most downstream locations of the Gab-cheon River have increased about twice and three times, respectively. It was estimated that the treatment plant is responsible for 35%. 46%, 76% and 63% of BOD, COD, TN and TP loadings of the Gab-cheon River, respectively. It was also estimated that small tributaries and nonpoint sources are responsible for 54% and 47% of BOD and COD loadings of the Gab-cheon River. Therefore, it is recommended to further reduce nutrient loadings from the treatment plant and also reduce surface runoff organic loading from nonpoint sources including small tributaries and storm sewers.

Evaluation of significant pollutant sources affecting water quality of the Geum River using principal component analysis (주성분분석(PCA) 방법을 이용한 금강 수질의 주요 오염원 영향 평가)

  • Legesse, Natnael Shiferaw;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.8
    • /
    • pp.577-588
    • /
    • 2022
  • This study aims to identify the limiting nutrient for algal growth in the Geum River and the significant pollutant sources from the tributaries affecting the water quality and to provide a management alternative for an improvement of water quality. An eight-year of daily data (2013~2020) were collected from the Water Environment Information System (water.nier.go.kr) and Water Resources Management Information System (wamis.go.kr). 14 water quality variables were analyzed at five water quality monitoring stations in the Geum River (WQ1-WQ5). In the Geum River, the water quality variables, especially Chl-a vary greatly in downstream of the river. In the open weir gate operation, TP (total phosphorus) and water temperature greatly influence the growth of algae in downstream of the river. A correlation analysis was used to identify the relationship between variables and investigate the factor affecting algal growth in the Geum River. At the downstream station (WQ5), TP and Temp have shown a strong correlation with Chl-a, indicating they significantly influence the algal bloom. The principal component analysis (PCA) was applied to identify and prioritize the major pollutant sources of the two major tributaries of the river, Gab-cheon and Miho-cheon. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant, urban, and agricultural pollutions pollution are identified as significant pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. PCA seems to be effective in identifying water pollutant sources for the Geum River and its tributaries in detail and thus can be used to develop water quality management strategies.

Geochemical Investigation on Arsenic Contamination in the Alluvial Ground-water of Mankyeong River Watershed (만경강유역 충적대수층 지하수의 비소오염현황 및 지구화학적 특성)

  • Moon, Jeong-Tae;Kim, Kang-Joo;Kim, Seok-Hwi;Jeong, Cheon-Sung;Hwang, Gab-Soo
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.673-683
    • /
    • 2008
  • As-rich alluvial groundwaters occurring in the agricultural area of Mankyeong River watershed were geochemically studied. 15 out of 29 investigated wells (52%) showed As levels exceeding the WHO drinking water standard ($10{\mu}g/L$). Their chemistry is characterized by low Eh levels, low $NO_3$ and $SO_4$ concentrations, and high pH, alkalinity, Fe, $NH_4$, and $PO_4$ levels. This suggests that arsenic is enriched by the reductive dissolution of As-bearing Fe-/Mn-(hydro)oxides, the commonest process in Bangladesh and West Bengal of India, of which groundwaters are severely contaminated by As. It was also revealed that As concentrations in the area are strongly regulated by the presence of agrochemicals such as $NO_3$ and $SO_4$.