• 제목/요약/키워드: The Boltzmann equation

검색결과 219건 처리시간 0.026초

미소유동 채널에서 중첩된 전기이중층 구조의 과도 형성과정 (Transient Evolution of Overlapped EDL Fields in a Microfluidic Channel)

  • 곽호상
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1528-1533
    • /
    • 2004
  • A numerical investigation is made of transient evolutionary prcocess of electroosmotic flow in a two-dimensional microchannel connected to a reservoir. The channel height is very small so that two electric double layers forming on the charged surfaces are overlapped. Transient transports of ions in the electrolyte solution are computed by integrating the Nernst-Planck equation together with the Poisson equation for electric potential. The numerical results illustrate that there are two distinct transient phases. The physical mechanisms and relevant time scales for the transient evolution are described.

  • PDF

방전여기 KrF 레이저 장치의 방전특성 해석 (The Analysis of Discharge Characteristics for Discharge Excited KrF Laser System)

  • 정재근;최부연;이주희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.393-396
    • /
    • 1988
  • In discharge excited excimer laser, it is hard to say that the analysis of laser operation was well explained until now. But this can be improved by analysis the nonlinear discharge characteristics in the cavity. The nonlinear characteristics can be analysed by solving the nonlinear resistance which depends on electron mobility and number density. We can calculate the electron mobility and number density each other using Boltzmann equation and Kinetics equation. So we calculated the nonlinear resistance and analysed nonlinear discharge characteristics.

  • PDF

차세대 리소그래피 빛샘 발생을 위한 플라스마 집속장치의 아르곤 아크 플라스마의 방출 스펙트럼 진단 (Emission spectroscopic diagnostics of argon arc Plasma in Plasma focus device for advanced lithography light source)

  • 홍영준;문민욱;이수범;오필용;송기백;홍병희;서윤호;이원주;신희명;최은하
    • 한국진공학회지
    • /
    • 제15권6호
    • /
    • pp.581-586
    • /
    • 2006
  • 차세대 리소그래피 기술인 극자외선(EUV : Extreme Ultraviolet) 빛샘 연구의 기초단계로써, 동축타입의 전극구조가 설치된 다이오드 챔버를 통해 Ar 플라스마를 생성하였으며, 방출 분광기술(emission spectroscopy)를 이용하여 방출된 가시광선 영역의 빛을 조사하였다. 장치의 입력 전압을 0.5kV씩 변화를 주어 $2\sim3.5kV$까지 인가를 했으며 이극챔버의 최적 압력인 330mTorr 일 때 각 전압에 따른 방출 분광선 데이터를 얻었다. 이때 Ar I과 Ar II 방출선을 관측하였으며 국소적인 열적평형 (LTE ; Local Thermodynamic Equilibrium) 상태의 가정 하에 볼츠만 도표(Boltzmann plot)와 사하(Saha) 방정식을 이용해 Ar I 및 Ar II의 전자온도와 이온 밀도를 각각 계산하였다. 각 입력전압에 대해 이온밀도는 Ar I과 Ar II에서 각각 $\sim10^{15}/cc$$\sim10^{13}/cc$의 값으로 계산되었다.

극초단 펄스 레이저에 의한 절연체의 광학 손상 해석 (Numerical Analysis of Optical Damage in Dielectrics Irradiated by Ultra-Short Pulsed Lasers)

  • 이성혁;강관구;이준식;최영기;박승호;유홍선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1213-1218
    • /
    • 2004
  • The present article reports extensive numerical results on the non-local characteristics of ultra-short pulsed laser-induced breakdowns of fused silica ($SiO_{2}$) by using the multivariate Fokker-Planck equation. The nonlocal type of multivariate Fokker-Planck equation is modeled on the basis of the Boltzmann transport formalism to describe the ultra-short pulsed laser-induced damage phenomena in the energy-position space, together with avalanche ionization, three-body recombination, and multiphoton ionization. Effects of electron avalanche, recombination, and multiphoton ionization on the electronic transport are examined. From the results, it is observed that the recombination becomes prominent and contributes to reduce substantially the rate of increase in electron number density when the electron density exceeds a certain threshold. With very intense laser irradiation, a strong absorption of laser energy takes place and an initially transparent solid is converted to a metallic state, well known as laser-induced breakdown. It is also found that full ionization is provided at intensities above threshold, all further laser energy is deposited within a thin skin depth.

  • PDF

박막의 열물성 측정 및 광학특성 연구 (A Study on Thermal Conductivity Measurement and Optical Characteristics of Thin Films)

  • 권혁록;이성혁
    • 전기학회논문지
    • /
    • 제56권12호
    • /
    • pp.2202-2207
    • /
    • 2007
  • The present article investigates experimentally and theoretically thermal and optical characteristics of thin film structures through measurement of thermal conductivity of Pyrex 7740 and reflectance in silicon thin film. The $3{\omega}$ method is used to measure thermal conductivity of very thin film with high accuracy and the optical characteristics in thin films are studied to examine the influence of incidence angle of light on reflectance by using the CTM(Characteristics Transmission Method) and the 633 nm He-Ne laser reflectance measurement system. It is found that the estimated reflectance of silicon show good agreement with experimental data. In particular, the present study solves the EPRT(Equation of Phonon Radiative Transport) which is based on Boltzmann transport equation for predicting thermal conductivity of nanoscale film structures. From the results, the measured thermal conductivity is in good agreement with the previous published data. Moreover, thermal conductivities are estimated for different film thickness. It indicates that as film thickness decreases, thermal conductivity decreases substantially due to internal scattering.

Quasi-static responses of time-dependent sandwich plates with viscoelastic honeycomb cores

  • Nasrin Jafari;Mojtaba Azhari
    • Structural Engineering and Mechanics
    • /
    • 제88권6호
    • /
    • pp.589-598
    • /
    • 2023
  • This article addresses the quasi-static analysis of time-dependent honeycomb sandwich plates with various geometrical properties based on the bending analysis of elastic honeycomb sandwich plates employing a time function with three unknown coefficients. The novel point of the developed method is that the responses of viscoelastic honeycomb sandwich plates under static transversal loads are clearly formulated in the space and time domains with very low computational costs. The mechanical properties of the sandwich plates are supposed to be elastic for the faces and viscoelastic honeycomb cells for the core. The Boltzmann superposition integral with the constant bulk modulus is used for modeling the viscoelastic material. The shear effect is expressed using the first-order shear deformation theory. The displacement field is predicted by the product of a determinate geometrical function and an indeterminate time function. The simple HP cloud mesh-free method is utilized for discretizing the equations in the space domain. Two coefficients of the time function are extracted by answering the equilibrium equation at two asymptotic times. And the last coefficient is easily determined by solving the first-order linear equation. Numerical results are presented to consider the effects of geometrical properties on the displacement history of viscoelastic honeycomb sandwich plates.

Simulation of Capacitively Coupled RF Plasma; Effect of Secondary Electron Emission - Formation of Electron Shock Wave

  • Park, Seung-Kyu;Kim, Heon-Chang
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.31-37
    • /
    • 2009
  • This paper presents one and two dimensional simulation results with discontinuous features (shocks) of capacitively coupled rf plasmas. The model consists of the first two and three moments of the Boltzmann equation for the ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The local field and drift-diffusion approximations are not employed, and as a result the charged species conservation equations are hyperbolic in nature. Hyperbolic equations may develop discontinuous solutions even if their initial conditions are smooth. Indeed, in this work, secondary electron emission is shown to produce transient electron shock waves. These shocks form at the boundary between the cathodic sheath (CS) and the quasi-neutral (QN) bulk region. In the CS, the electrons emitted from the electrode are accelerated to supersonic velocities due to the large electric field. On the other hand, in the QN the electric field is not significant and electrons have small directed velocities. Therefore, at the transition between these regions, the electron fluid decelerates from a supersonic to a subsonic velocity in the direction of flow and a jump in the electron velocity develops. The presented numerical results are consistent with both experimental observations and kinetic simulations.

  • PDF

펨토초 레이저가 조사되는 동안의 금속 박막내의 비평형 에너지 전달 현상에 대한 수치해석 연구 (Numerical Investigation on Nonequilibrium Energy Transfer in Thin Metal Film Structures during the Irradiation of Femtosecond Pulse Laser)

  • 심형섭;이성혁
    • 전기학회논문지
    • /
    • 제56권2호
    • /
    • pp.367-373
    • /
    • 2007
  • The present study investigates numerically nonequilibrium energy transfer between electrons and phonons in metal thin films irradiated by ultrashort pulse lasers and it also provides the temporal and spatial variations of electron and phonon temperatures using the well-established two-temperature model(TTM) on the basis of the Boltzmann transport equation(BTE). This article predicts the crater shapes in gold film structures, and compares the results by using two-dimensional energy transport equation. From the results, it is found that nonequilibrium energy transfer between electrons and phonons takes place, and the equilibrium time increases with the increase of laser fluence. On the other hand, above threshold fluence the ablation time doesn't change nearly with increasing fluences. Compared with one-dimensional TTM, it also reveals that the temporal distributions of electron and phonon temperatures at the top surface estimated by using two-dimensional TTM have a similar tendency. The results show that two-dimensional TTM can simulate the crater shape of metals during the irradiation of femtosecond pulse lasers and the absorbed energy is propagated to z-direction faster than to r-direction.

Numerical analysis of particle transport in low-pressure, low-temperature plasma environment

  • Kim, Heon Chang
    • 한국입자에어로졸학회지
    • /
    • 제5권3호
    • /
    • pp.123-131
    • /
    • 2009
  • This paper presents simulation results of particle transport in low-pressure, low-temperature plasma environment. The size dependent transport of particles in the plasma is investigated with a two-dimensional simulation tool developed in-house for plasma chamber analysis and design. The plasma model consists of the first two and three moments of the Boltzmann equation for ion and electron fluids respectively, coupled to Poisson's equation for the self-consistent electric field. The particle transport model takes into account all important factors, such as gravitational, electrostatic, ion drag, neutral drag and Brownian forces, affecting the motion of particles in the plasma environment. The particle transport model coupled with both neutral fluid and plasma models is simulated through a Lagrangian approach tracking the individual trajectory of each particle by taking a force balance on the particle. The size dependant trap locations of particles ranging from a few nm to a few ${\mu}m$ are identified in both electropositive and electronegative plasmas. The simulation results show that particles are trapped at locations where the forces acting on them balance. While fine particles tend to be trapped in the bulk, large particles accumulate near bottom sheath boundaries and around material interfaces, such as wafer and electrode edges where a sudden change in electric field occurs. Overall, small particles form a "dome" shape around the center of the plasma reactor and are also trapped in a "ring" near the radial sheath boundaries, while larger particles accumulate only in the "ring". These simulation results are qualitatively in good agreement with experimental observation.

  • PDF

Application of the Laplace transformation for the analysis of viscoelastic composite laminates based on equivalent single-layer theories

  • Sy, Ngoc Nguyen;Lee, Jaehun;Cho, Maenghyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.458-467
    • /
    • 2012
  • In this study, the linear viscoelastic response of a rectangular laminated plate is investigated. The viscoelastic properties, expressed by two basic spring-dashpot models, that is Kelvin and Maxwell models, is assumed in the range to investigate the influence of viscoelastic coefficients to mechanical behavior. In the present study, viscoelastic responses are performed for two popular equivalent single-layered theories, such as the first-order shear deformation theory (FSDT) and third-order shear deformation theory (TSDT). Compliance and relaxation modulus of time-dependent viscoelastic behavior are approximately determined by Prony series. The constitutive equation for linear viscoelastic material as the Boltzmann superposition integral equation is simplified by the convolution theorem of Laplace transformation to avoid direct time integration as well as to improve both accuracy and computational efficiency. The viscoelastic responses of composite laminates in the real time domain are obtained by applying the inverse Laplace transformation. The numerical results of viscoelastic phenomena such as creep, cyclic creep and recovery creep are presented.