• Title/Summary/Keyword: The Blind Watermarking

Search Result 110, Processing Time 0.029 seconds

A Blind Watermarking Algorithm using CABAC for H.264/AVC Main Profile (H.264/AVC Main Profile을 위한 CABAC-기반의 블라인드 워터마킹 알고리즘)

  • Seo, Young-Ho;Choi, Hyun-Jun;Lee, Chang-Yeul;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.2C
    • /
    • pp.181-188
    • /
    • 2007
  • This paper proposed a watermark embedding/extracting method using CABAC(Context-based Adaptive Binary Arithmetic Coding) which is the entropy encoder for the main profile of MPEG-4 Part 10 H.264/AVC. This algorithm selects the blocks and the coefficients in a block on the bases of the contexts extracted from the relationship to the adjacent blocks and coefficients. A watermark bit is embedded without any modification of coefficient or with replacing the LSB(Least Significant Bit) of the coefficient with a watermark bit by considering both the absolute value of the selected coefficient and the watermark bit. Therefore, it makes it hard for an attacker to find out the watermarked locations. By selecting a few coefficients near the DC coefficient according to the contexts, this algorithm satisfies the robustness requirement. From the results from experiments with various kinds and various strengths of attacks the maximum error ratio of the extracted watermark was 5.02% in maximum, which makes certain that the proposed algorithm has very high level of robustness. Because it embeds the watermark during the context modeling and binarization process of CABAC, the additional amount of calculation for locating and selecting the coefficients to embed watermark is very small. Consequently, it is highly expected that it is very useful in the application area that the video must be compressed right after acquisition.

Watermarking for Digital Hologram by a Deep Neural Network and its Training Considering the Hologram Data Characteristics (딥 뉴럴 네트워크에 의한 디지털 홀로그램의 워터마킹 및 홀로그램 데이터 특성을 고려한 학습)

  • Lee, Juwon;Lee, Jae-Eun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.296-307
    • /
    • 2021
  • A digital hologram (DH) is an ultra-high value-added video content that includes 3D information in 2D data. Therefore, its intellectual property rights must be protected for its distribution. For this, this paper proposes a watermarking method of DH using a deep neural network. This method is a watermark (WM) invisibility, attack robustness, and blind watermarking method that does not use host information in WM extraction. The proposed network consists of four sub-networks: pre-processing for each of the host and WM, WM embedding watermark, and WM extracting watermark. This network expand the WM data to the host instead of shrinking host data to WM and concatenate it to the host to insert the WM by considering the characteristics of a DH having a strong high frequency component. In addition, in the training of this network, the difference in performance according to the data distribution property of DH is identified, and a method of selecting a training data set with the best performance in all types of DH is presented. The proposed method is tested for various types and strengths of attacks to show its performance. It also shows that this method has high practicality as it operates independently of the resolution of the host DH and WM data.

A Mesh Watermarking Using Patch CEGI (패치 CEGI를 이용한 메쉬 워터마킹)

  • Lee Suk-Hwan;Kwon Ki-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.67-78
    • /
    • 2005
  • We proposed a blind watermarking for 3D mesh model using the patch CEGIs. The CEGI is the 3D orientation histogram with complex weight whose magnitude is the mesh area and phase is the normal distance of the mesh from the designated origin. In the proposed algorithm we divide the 3D mesh model into the number of patch that determined adaptively to the shape of model and calculate the patch CEGIs. Some cells for embedding the watermark are selected according to the rank of their magnitudes in each of patches after calculating the respective magnitude distributions of CEGI for each patches of a mesh model. Each of the watermark bit is embedded into cells with the same rank in these patch CEGI. Based on the patch center point and the rank table as watermark key, watermark extraction and realignment process are performed without the original mesh. In the rotated model, we perform the realignment process using Euler angle before the watermark extracting. The results of experiment verify that the proposed algorithm is imperceptible and robust against geometrical attacks of cropping, affine transformation and vertex randomization as well as topological attacks of remeshing and mesh simplification.

Estimation-based Watermarking Algorithm with Low Density Parity Check (LDPC) Codes (LDPC를 이용한 예측 기반 워터마킹 알고리듬)

  • Lim, Jae-Hyuck;Won, Chee-Sun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.76-84
    • /
    • 2007
  • The goal of this paper is to improve the watermarking performance using the following two methods; watermark estimation and low density parity check (LDPC) codes. For a blind watermark decoding, the power of a host image, which is hundreds times greater than the watermark power, is the main noise source. Therefore, a technique that can reduce the effect of the power of the host image to the detector is required. To this end, we need to estimate watermark from the watermarked image. In this paper, the watermark estimation is done by an adaptive estimation method with the generalized Gaussian distribution modeling of sub-band coefficients in the wavelet domain. Since the watermark capacity as well as the error rate can be improved by adopting optimum decoding principles and error correcting codes (ECC), we employ the LDPC codes for the decoding of the estimated watermark. Also, in LDPC codes, the knowledge about the noise power can improve the error correction capability. Simulation results demonstrate the superior performance of the proposed algorithm comparing to LDPC decoding with other estimation-based watermarking algorithms.

A Watermarking Algorithm of 3D Mesh Model Using Spherical Parameterization (구면 파라미터기법을 이용한 3차원 메쉬 모델의 워더마킹 알고리즘)

  • Cui, Ji-Zhe;Kim, Jong-Weon;Choi, Jong-Uk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.1
    • /
    • pp.149-159
    • /
    • 2008
  • In this paper, we propose a blind watermarking algorithm of 3d mesh model using spherical parameterization. Spherical parameterization is a useful method which is applicable to 3D data processing. Especially, orthogonal coordinate can not analyse the feature of the vertex coordination of the 3D mesh model, but this is possible to analyse and process. In this paper, the centroid center of the 3D model was set to the origin of the spherical coordinate, the orthogonal coordinate system was transformed to the spherical coordinate system, and then the spherical parameterization was applied. The watermark was embedded via addition/modification of the vertex after the feature analysis of the geometrical information and topological information. This algorithm is robust against to the typical geometrical attacks such as translation, scaling and rotation. It is also robust to the mesh reordering, file format change, mesh simplification, and smoothing. In this case, the this algorithm can extract the watermark information about $90{\sim}98%$ from the attacked model. This means it can be applicable to the game, virtual reality and rapid prototyping fields.

Multiple Audio Watermarking using Quantization Index Modulation on Frequency Phase and Magnitude Response (주파수 위상 응답과 크기 응답에 QIM을 이용한 다중 오디오 워터마킹)

  • Seo, Yejin;Cho, Sangjin;Chong, Uipil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.71-78
    • /
    • 2013
  • This paper describes a multiple audio watermarking using Quantization Index Modulation (QIM) on frequency phase and magnitude response. Proposed embedding procedure is composed of two stage. At the first stage, the watermark is embedded on the frequency phase response using QIM. In the second stage, the watermark is embedded using adaptive QIM with the step-size that is adaptively determined using the maximum value of the frequency magnitude response of every frame. The watermark is extracted by calculating the Euclidean distance as the blind detection. The proposed method is robust against most of attacks of audio watermark benchmarking. For the Fourier attacks, the proposed method shows over 95% recovery rate.

A Wavelet-based Adaptive Image Watermarking Using Edge Table (영상의 에지 특성을 고려한 웨이블릿 기반의 적응적인 워터마킹 기법)

  • Lee Jae-Hyuk;Moon Ho-Seok;Park Sang-Sung;Jang Dong-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.2 s.40
    • /
    • pp.53-63
    • /
    • 2006
  • A discrete wavelet transform(DWT)-based image watermarking algorithm is proposed in this paper, the proposed method decompose the original image into four subsampled images. Subsampled images are transformed by 2 level DWT, respectively. The proposed method embeds the watermark into one of the subsampled DWT images using edge table that represents dege characteristics of the original image. Without an original image, a watermark is extracted through comparison one subsampled DWT image inserted the watermark with the rest of the submapled DWT images. many exiting methodes do not adequately estimate edge regions where intensities are changed abruptly. The proposed method address with an edge table. Also, even if the watermark is embedded into a low frequency area, our method preserves the image quality. The vality of the proposed method is demonstrated through the PSNR test and subjective image quality that human eyes feel.

  • PDF

Robust Blind Watermarking in Medical Images Using by Polar Transformation (의료영상에서 Polar 변환을 적용한 강인한 블라인드 워터마킹 기법)

  • 김태호;남기철;박무훈
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.241-246
    • /
    • 2004
  • Medical images are being managed more by PACS in general medical institutions. It is important to protect patients from being invaded their privacy related to the images. It is also necessary to confirm the ownership, the right of properity of the medical images and notice whether the data are modified. In this paper, we propose a robust watermarking against RST attacks in medical images on the PACS. The proposed scheme modifies and improves Log-Polar Mapping and Fourier Mellin Transform in order to realize and recover serious image degradation and watermark data loss caused by the conversion between cartesian coordinate and log-polar coordinate. We used the radius and theta Look Up Table to solve the realization of the Fourier Mellin Transform, and inserted a watermark into 2D-DFT magnitudes using Spread Spectrum. Experimental results shows that this method are robust to several attack.

  • PDF

The High-Reliable Image Authentication Technique using Histogram Compensation (히스토그램 보정을 이용한 고신뢰성 영상 인증 기법)

  • Kim, Hyo-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.7
    • /
    • pp.1088-1094
    • /
    • 2010
  • Image authentication algorithms have to discriminate forged contents in the various critical fields of military, medical services, digital documents. They must ensure perceptual invisibility and fragility against malicious attacks. It is desirable that watermarking algorithms support sufficient insertion capacity and blind feature. And, high reliable algorithms that can eliminate false-positive and false-negative errors are needed in the watermark extraction process. In this paper, we control coefficients of high frequency band in a DCT domain and compensate brightness histogram for high reliability. As a result, we found that the proposed algorithm guarantee various requirements such as perceptual invisibility with high PSNR values, fragility, high reliability and blind feature. In addition, experiment results show that the proposed algorithm can be used steganographic applications by sufficient capacity of watermark.

Robust and Blind Watermarking for DIBR Using a Depth Variation Map (깊이변화지도를 이용한 DIBR 공격의 강인성 블라인드 워터마킹)

  • Lee, Yong-Seok;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.21 no.6
    • /
    • pp.845-860
    • /
    • 2016
  • This paper proposes a digital watermarking scheme to protect the ownership of the freeview 2D or 3D image such that the viewer watches the image(s) by rendering a arbitrary viewpoint image(s) with the received texture image and its depth image. In this case a viewpoint change attack essentially occurs, even if it is not malicious. In addition some malicious attacks should be considered, which is to remove the embedded watermark information. In this paper, we generate a depth variation map (DVM) to find the locations less sensitive to the viewpoint change. For each LH subband after 3-level 2DDWT for the texture image, the watermarking locations are found by referring the DVM. The method to embed a watermark bit to a pixel uses a linear quantizer whose quantization step is determined according to the energy of the subband. To extract the watermark information, all the possible candidates are first extracted from the attacked image by considering the correlation to the original watermark information. For each bit position, the final extracted bit is determined by a statistical treatment with all the candidates corresponding that position. The proposed method is experimented with various test images for the various attacks and compared to the previous methods to show that the proposed one has excellent performance.