• 제목/요약/키워드: Thar Desert

검색결과 4건 처리시간 0.016초

Jewel of Thar Desert: Case study of a hidden wetland

  • Monali Sen
    • 한국습지학회지
    • /
    • 제25권1호
    • /
    • pp.26-34
    • /
    • 2023
  • Wetlands are very critical for the conservation of aquatic ecosystems, while also serving as the breeding/ nesting/ resting grounds for water birds. Generally, wetlands support both resident and migratory birds, thus serving as connecting dots in the global flyways. The Rajasthan state of India has two Ramsar sites (Keoladeo National Park and Sambhar Lake) and many other water bodies/wetlands. However, most of these areas are segregated in the eastern, southeastern, southern, and northern parts. In the western part of Rajasthan, where lies the Great Indian or Thar desert, there are no such reported prominent wetlands drawing attention towards a substantial number of resident and migratory water birds. The author is an Indian Forest Service officer, who was posted in the Thar Desert region and during that time had identified a hidden wetland in the desert landscape. This study deliberates on the wetland location and its faunal diversity with prospects of developing the area as a proper wetland conservation zone. India is a signatory to the Central Asian Flyway of migratory species and serves as an important member in terms of having significant wetlands and reported migratory birds count. The need of preserving and bring the arid zone's hidden wetlands to the forefront can serve as an important tool to conserve water birds and comply with worldwide bird migration conservation efforts.

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • 제7권3호
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine($4.0\;{\mu}M$) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of $1.0\;{\mu}M$ naphthalene acetic acid (NAA) in combination with $4.0\;{\mu}M$ BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with $4.0\;{\mu}M$ indolebutyric acid (IBA) and 100 mg/L activated charcoal, at $28{\pm}2^{\circ}C$ and $60\%$ RH. Sixty percent of these plantlets were hardened in green house.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권9호
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Molecular Characterization of Rathi and Tharparkar Indigenous Cattle (Bos indicus) Breeds by RAPD-PCR

  • Sharma, Amit Kumar;Bhushan, Bharat;Kumar, Sanjeev;Kumar, Pushpendra;Sharma, Arjava;Kumar, Satish
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권9호
    • /
    • pp.1204-1209
    • /
    • 2004
  • Random amplification of polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) analysis was carried out using DNA samples of 30 animals of Rathi cattle and 42 animals of Tharparkar cattle. Genomic DNA was isolated as per standard protocol and evaluated for its quality, purity and concentration. Twenty three random primers were screened out of which 15 primers yielded satisfactory amplifications and were used for further analysis. Average numbers of polymorphic fragments per primer were 7.07${\pm}$0.86 in Rathi and 6.80${\pm}$0.61 in Tharparkar cattle. The percentage of polymorphic bands in these two cattle breeds were 86 and 87%, respectively. Within breed genetic similarities for pooled over primers in the animals of Rathi and Tharparkar breeds were .577${\pm}$0.30 and 0.531${\pm}$0.02, respectively on the basis of band frequency (BF) and 0.645${\pm}$0.04 and 0.534${\pm}$0.04, respectively on the basis of band sharing (BS). Averages of between breed genetic similarities for pooled over primers were 0.97 and 0.92 according to BF and BS, respectively, which reflect higher degree of genetic similarity between Rathi and Tharparkar cattle breeds. Index of genetic distance based on BF and BS for pooled over primers was 0.030${\pm}$0.011 and 0.088${\pm}$0.031, respectively. Percentage of polymorphic bands and within-breed genetic similarities on the basis of band frequency (BF) and band sharing (BS) for pooled over primers revealed higher genetic similarity in Rathi than Tharparkar cattle population. High estimates of between breed genetic similarities for pooled over primers indicated that either Rathi is having decent from Tharparkar or both the cattle breeds are having common descent. Low value of Index of genetic distances between these two cattle breeds may be due to the fact that Rathi and Tharparkar cattle breeds are the native of Thar Desert in Northwest India. The results of between breed genetic distances also confirm the existence of high degree of genetic similarity between these two breeds of cattle.