• 제목/요약/키워드: Tfr cell

검색결과 2건 처리시간 0.015초

Enforced Expression of CXCR5 Drives T Follicular Regulatory-Like Features in Foxp3+ T Cells

  • Kim, Young Uk;Kim, Byung-Seok;Lim, Hoyong;Wetsel, Rick A.;Chung, Yeonseok
    • Biomolecules & Therapeutics
    • /
    • 제25권2호
    • /
    • pp.130-139
    • /
    • 2017
  • $CXCR5^+$ T follicular helper (Tfh) cells are associated with aberrant autoantibody production in patients with antibody-mediated autoimmune diseases including lupus. Follicular regulatory T (Tfr) cells expressing CXCR5 and Bcl6 have been recently identified as a specialized subset of $Foxp3^+$ regulatory T (Treg) cells that control germinal center reactions. In this study, we show that retroviral transduction of CXCR5 gene in $Foxp3^+$ Treg cells induced a stable expression of functional CXCR5 on their surface. The Cxcr5-transduced Treg cells maintained the expression of Treg cell signature genes and the suppressive activity. The expression of CXCR5 as well as Foxp3 in the transduced Treg cells appeared to be stable in vivo in an adoptive transfer experiment. Moreover, Cxcr5-transduced Treg cells preferentially migrated toward the CXCL13 gradient, leading to an effective suppression of antibody production from B cells stimulated with Tfh cells. Therefore, our results demonstrate that enforced expression of CXCR5 onto Treg cells efficiently induces Tfr cell-like properties, which might be a promising cellular therapeutic approach for the treatment of antibody-mediated autoimmune diseases.

여포 보조 T세포와 여포 조절 T세포의 균형 및 종자중심 형성 (Germinal Center Formation Controlled by Balancing Between Follicular Helper T Cells and Follicular Regulatory T Cells)

  • 박홍재;김도현;최제민
    • 한양메디칼리뷰
    • /
    • 제33권1호
    • /
    • pp.10-16
    • /
    • 2013
  • Follicular helper T cells (Tfh) play a significant role in providing T cell help to B cells during the germinal center reaction, where somatic hypermutation, affinity maturation, isotype class switching, and the differentiation of memory B cells and long-lived plasma cells occur. Antigen-specific T cells with IL-6 and IL-21 upregulate CXCR5, which is required for the migration of T cells into B cell follicles, where these T cells mature into Tfh. The surface markers including PD-1, ICOS, and CD40L play a significant role in providing T cell help to B cells. The upregulation of transcription factor Bcl-6 induces the expression of CXCR5, which is an important factor for Tfh differentiation, by inhibiting the expression of other lineage-specific transcription factors such as T-bet, GATA3, and RORγt. Surprisingly, recent evidence suggests that CD4 T cells already committed to Th1, Th2, and Th17 cells obtain flexibility in their differentiation programs by downregulating T-bet, GATA3, and RORγt, upregulating Bcl-6 and thus convert into Tfh. Limiting the numbers of Tfh within germinal centers is important in the regulation of the autoantibody production that is central to autoimmune diseases. Recently, it was revealed that the germinal center reaction and the size of the Tfh population are also regulated by thymus-derived follicular regulatory T cells (Tfr) expressing CXCR5 and Foxp3. Dysregulation of Tfh appears to be a pathogenic cause of autoimmune disease suggesting that tight regulation of Tfh and germinal center reaction by Tfr is essential for maintaining immune tolerance. Therefore, the balance between Tfh and Tfr appears to be a critical peripheral tolerance mechanism that can inhibit autoimmune disorders.