• Title/Summary/Keyword: Texture information

Search Result 1,236, Processing Time 0.028 seconds

Texture-based Hatching for Color Image and Video

  • Yang, Hee-Kyung;Min, Kyung-Ha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.763-781
    • /
    • 2011
  • We present a texture-based hatching technique for color images and video. Whereas existing approaches produce monochrome hatching effects in considering of triangular mesh models by applying strokes of uniform size, our scheme produces color hatching effects from photographs and video using strokes with a range of sizes. We use a Delaunay triangulation to create a mesh of triangles with sizes that reflect the structure of an input image. At each vertex of this triangulation, the flow of the image is analyzed and a hatching texture is then created with the same alignment, based on real pencil strokes. This texture is given a modified version of a color sampled from the image, and then it is used to fill all the triangles adjoining the vertex. The three hatching textures that accumulate in each triangle are averaged and the result of this process across all the triangles forms the output image. We can also add a paper texture effect and enhance feature lines in the image. Our algorithm can also be applied to video. The results are visually pleasing hatching effects similar to those seen in color pencil drawings and oil paintings.

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.1
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

Hybrid Approach of Texture and Connected Component Methods for Text Extraction in Complex Images (복잡한 영상 내의 문자영역 추출을 위한 텍스춰와 연결성분 방법의 결합)

  • 정기철
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.175-186
    • /
    • 2004
  • We present a hybrid approach of texture-based method and connected component (CC)-based method for text extraction in complex images. Two primary methods, which are mainly utilized in this area, are sequentially merged for compensating for their weak points. An automatically constructed MLP-based texture classifier can increase recall rates for complex images with small amount of user intervention and without explicit feature extraction. CC-based filtering based on the shape information using NMF enhances the precision rate without affecting overall performance. As a result, a combination of texture and CC-based methods leads to not only robust but also efficient text extraction. We also enhance the processing speed by adopting appropriate region marking methods for each input image category.

Extraction of Texture Region-Based Average of Variations of Local Correlations Coefficients (국부상관계수의 영역 평균변화량에 의한 질감영역 추출)

  • 서상용;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5A
    • /
    • pp.709-716
    • /
    • 2000
  • We present an efficient algorithm using region-based average of variations of local correlation coefficients (LCC) for the extraction of texture regions. The key idea of this algorithm for the classification of texture and shade regions is to utilize the fact that the averages of the variations of LCCs according to different orientations texture regions are clearly larger than those in shade regions. In order to evaluate the performance of the proposed algorithm, we use nine test images (Lena, Bsail, Camera Man, Face, Woman, Elaine, Jet, Tree, and Tank) of 8-bit 256$\times$256 pixels. Experimental results show that the proposed feature extracts well the regions which appear visually as texture regions.

  • PDF

Rate-Distortion Based Image Segmentation Using Recursive Merging and Texture Approximation (질감 근사화 및 반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 정춘식;임채환;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.1B
    • /
    • pp.156-166
    • /
    • 2000
  • A rate-distortion based segmentation using recursive merging is presented, which considers texture as a homogeneity by adopting the procedure of a generalized texture approximation. The texture in a region is approximated by SA-DCT and a set of two uniform quantizers with fixed step sizes, one for DC and another for AC. Using the approximated texture, we calculated the rate-distortion based cost. The segmentation using recursive merging is performed by using the rate-distortion based cost. Experimental results for 256$\times$256 Lena show that the region-based coding using the proposed segmentation yields the PSNR improvements of 0.8~ 1.0 dB and 1.2~1.5 dB over that using the rate-distortion based segmentation with DC approximation only and JPEG, respectively.

  • PDF

Image Restoration and Object Removal Using Prioritized Adaptive Patch-Based Inpainting in a Wavelet Domain

  • Borole, Rajesh P.;Bonde, Sanjiv V.
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1183-1202
    • /
    • 2017
  • Image restoration has been carried out by texture synthesis mostly for large regions and inpainting algorithms for small cracks in images. In this paper, we propose a new approach that allows for the simultaneous fill-in of different structures and textures by processing in a wavelet domain. A combination of structure inpainting and patch-based texture synthesis is carried out, which is known as patch-based inpainting, for filling and updating the target region. The wavelet transform is used for its very good multiresolution capabilities. The proposed algorithm uses the wavelet domain subbands to resolve the structure and texture components in smooth approximation and high frequency structural details. The subbands are processed separately by the prioritized patch-based inpainting with isophote energy driven texture synthesis at the core. The algorithm automatically estimates the wavelet coefficients of the target regions of various subbands using optimized patches from the surrounding DWT coefficients. The suggested performance improvement drastically improves execution speed over the existing algorithm. The proposed patch optimization strategy improves the quality of the fill. The fill-in is done with higher priority to structures and isophotes arriving at target boundaries. The effectiveness of the algorithm is demonstrated with natural and textured images with varying textural complexions.

Automatic Extraction of Rescue Requests from Drone Images: Focused on Urban Area Images (드론영상에서 구조요청자 자동추출 방안: 도심지역 촬영영상을 중심으로)

  • Park, Changmin
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.3
    • /
    • pp.37-44
    • /
    • 2019
  • In this study, we propose the automatic extraction method of Rescue Requests from Drone Images. A central object is extracted from each image by using central object extraction method[7] before classification. A central object in an images are defined as a set of regions that is lined around center of the image and has significant texture distribution against its surrounding. In this case of artificial objects, edge of straight line is often found, and texture is regular and directive. However, natural object's case is not. Such characteristics are extracted using Edge direction histogram energy and texture Gabor energy. The Edge direction histogram energy calculated based on the direction of only non-circular edges. The texture Gabor energy is calculated based on the 24-dimension Gebor filter bank. Maximum and minimum energy along direction in Gabor filter dictionary is selected. Finally, the extracted rescue requestor object areas using the dominant features of the objects. Through experiments, we obtain accuracy of more than 75% for extraction method using each features.

Study of machine learning model for predicting non-small cell lung cancer metastasis using image texture feature (Image texture feature를 이용하여 비소세포폐암 전이 예측 머신러닝 모델 연구)

  • Hye Min Ju;Sang-Keun Woo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.313-315
    • /
    • 2023
  • 본 논문에서는 18F-FDG PET과 CT에서 추출한 영상인자를 이용하여 비소세포폐암의 전이를 예측하는 머신러닝 모델을 생성하였다. 18F-FDG는 종양의 포도당 대사 시 사용되며 이를 추적하여 환자의 암 세포를 진단하는데 사용되는 의료영상 기법 중 하나이다. PET과 CT 영상에서 추출한 이미지 특징은 종양의 생물학적 특성을 반영하며 해당 ROI로부터 계산되어 정량화된 값이다. 본 연구에서는 환자의 의료영상으로부터 image texture 프절 전이 예측에 있어 유의한 인자인지를 확인하기 위하여 AUC를 계산하고 단변량 분석을 진행하였다. PET과 CT에서 각각 4개(GLRLM_GLNU, SHAPE_Compacity only for 3D ROI, SHAPE_Volume_vx, SHAPE_Volume_mL)와 2개(NGLDM_Busyness, TLG_ml)의 image texture feature를 모델의 생성에 사용하였다. 생성된 각 모델의 성능을 평가하기 위해 accuracy와 AUC를 계산하였으며 그 결과 random forest(RF) 모델의 예측 정확도가 가장 높았다. 추출된 PET과 CT image texture feature를 함께 사용하여 모델을 훈련하였을 때가 각각 따로 사용하였을 때 보다 예측 성능이 개선됨을 확인하였다. 추출된 영상인자가 림프절 전이를 나타내는 바이오마커로서의 가능성을 확인할 수 있었으며 이러한 연구 결과를 바탕으로 개인별 의료 영상을 기반으로 한 비소세포폐암의 치료 전략을 수립할 수 있을 것이라 기대된다.

  • PDF

Multiple Texture Objects Extraction with Self-organizing Optimal Gabor-filter (자기조직형 최적 가버필터에 의한 다중 텍스쳐 오브젝트 추출)

  • Lee, Woo-Beom;Kim, Wook-Hyun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.311-320
    • /
    • 2003
  • The Optimal filter yielding optimal texture feature separation is a most effective technique for extracting the texture objects from multiple textures images. But, most optimal filter design approaches are restricted to the issue of supervised problems. No full-unsupervised method is based on the recognition of texture objects in image. We propose a novel approach that uses unsupervised learning schemes for efficient texture image analysis, and the band-pass feature of Gabor-filter is used for the optimal filter design. In our approach, the self-organizing neural network for multiple texture image identification is based on block-based clustering. The optimal frequency of Gabor-filter is turned to the optimal frequency of the distinct texture in frequency domain by analyzing the spatial frequency. In order to show the performance of the designed filters, after we have attempted to build a various texture images. The texture objects extraction is achieved by using the designed Gabor-filter. Our experimental results show that the performance of the system is very successful.

GPU-based Adaptive LOD control for Quadtree-Based Terrain Rendering (사진트리 기반 지형렌더링을 위한 GPU기반의 적응형 상세단계 조정 방법)

  • Choi, In-Ji;Shin, Byeong-Seok
    • Journal of Korea Game Society
    • /
    • v.8 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Quadtree-based terrain visualization methods have been used in a lot of applications. However, because most procedures are performed on the CPU, the rendering speed is slow in comparison to methods using GPU. In this paper, we present a quadtree-based terrain visualization method working on the GPU with specially designed data structure, error-texture and LOD-texture, and block-based acceleration method. In preprocessing step, we calculate errors in world space and store them to error-texture. In rendering step, we examine projected errors of error-texture and choose the detail level, then store the projected errors to LOD-texture. View frustum culling is performed as block unit using the values of error-texture and LOD-texture. This method reduces CPU load and performs time consuming jobs such as LOD selection and view frustum culling.

  • PDF