• Title/Summary/Keyword: Texture extraction

Search Result 268, Processing Time 0.027 seconds

A Study on Character Recognition using Wavelet Transformation and Moment (웨이브릿 변환과 모멘트를 이용한 문자인식에 관한 연구)

  • Cho, Meen-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.49-57
    • /
    • 2010
  • In this thesis, We studied on hand-written character recognition, that characters entered into a digital input device and remove noise and separating character elements using preprocessing. And processed character images has done thinning and 3-level wavelet transform for making normalized image and reducing image data. The structural method among the numerical Hangul recognition methods are suitable for recognition of printed or hand-written characters because it is usefull method deal with distortion. so that method are applied to separating elements and analysing texture. The results show that recognition by analysing texture is easily distinguished with respect to consonants. But hand-written characters are tend to decreasing successful recognition rate for the difficulty of extraction process of the starting point, of interconnection of each elements, of mis-recognition from vanishing at the thinning process, and complexity of character combinations. Some characters associated with the separation process is more complicated and sometime impossible to separating elements. However, analysis texture of the proposed character recognition with the exception of the complex handwritten is aware of the character.

Estimation of Irrigation Requirements for Red Pepper using Soil Moisture Model with High Resolution Meteorological Data (고해상도 기상자료와 토양수분모형을 이용한 고추의 관개량 산정)

  • Shin, Yong-Hoon;Choi, Jin-Yong;Lee, Seung-Jae;Lee, Sung-Hack
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.31-40
    • /
    • 2017
  • The aim of this study is to estimate net irrigation requirements for red pepper during growing period using soil moisture model. The soil moisture model based on water balance approach simulates soil moisture contents of 4 soil layers in crop root zone considering soil moisture extraction pattern. The LAMP (Land-Atmosphere Modeling Package) high resolution meteorological data provided from National Center for AgroMeteorology (NCAM) was used to simulate soil moisture as the input weather data. Study area for the LAMP data and soil moisture simulation covers $36.92^{\circ}{\sim}37.40^{\circ}$ in latitude and $127.36^{\circ}{\sim}127.94^{\circ}$ in longitude. Soil moisture was monitored using FDR (Frequency Domain Reflectometry) sensors and the data were used to validate the simulation model from May 24 to October 20 in 2016. The results showed spatially detailed soil moisture pattern under different weather conditions and soil texture. Net irrigation requirements were also different by location reflecting the spatially distributed weather condition. The average of the requirements was 470.7 mm and averages about soil texture were 466.8 mm, 482.4 mm, 456.0 mm, 481.7 mm, and 465.6 mm for clay loam, sandy loam, silty clay loam, clay, and sand respectively. This study showed spatial differences of soil moisture and the irrigation requirements of red pepper about spatially uneven weather condition and soil texture. From the results, it was demonstrated that high resolution meteorological data could provide an opportunity of spatially different crop water requirement estimation during the irrigation management.

Feature Extraction in an Aerial Photography of Gimnyeong Sand Dune Area by Texture Filtering (항공사진의 질감 분석을 통한 김녕사구지역의 지형지물 추출)

  • Chang Eun-Mi;Park Kyeong
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.2 s.113
    • /
    • pp.139-149
    • /
    • 2006
  • Earlier research works focused on the seasonal patterns and bio-geochemical processes in sand dunes, and the satellite data and aerial photographs have been used only as a backdrop or for the multi-temporal delineation of sand dune area. In order to find the optimal way to extract features' characteristics, Gimnyeong sand dune area was selected as a study site. Field works have been carried out three times to collect ground control points and sand samples for laboratory analyses. The texture of sand dune is classified as fine sand, which has been derived from shell fragments. The sand dune penetrated into the island from northwest to southeast direction. An aerial photograph was re-sampled into one-meter resolution and rectified with software including Erdas Imagine and ENVI. Sub-scenes were chosen as samples for sand dune, urban area and rural area. K-group non-parametric analysis had been done for the geometric and spectral values of enclosed texture patches. Urban areas proved to have significant smaller patches than the others.

Extraction of SAR Imagery Informations for the Classification Accuracy Enhancement - Using SPOT XS and RADARSAT SAR Imagery (광학영상의 토지피복분류 정확도 향상을 위한 SAR 영상 정보의 처리에 관한 연구)

  • Seo, Byoung-Jun;Park, Min-Ho;Kim, Yong-Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.121-130
    • /
    • 2000
  • For the land-cover classification we have usually used imagery of the optical sensors only. But currently a number of the satellite with various sensors are operating and the availability of using the data acquired from them are increasing. SAR sensors, in particular, can produce additional informations on the land-cover which has not been available from optical sensors. On this study, I have applied the SAR Image to the SPOT XS image in the classification procedures, and analysed the classified results. In this procedure I have extracted texture informations from SAR intensity images, then applied both intensity and texture informations. From the accuracy analysis, overall accuracy are increased slightly when the SAR texture was applied. In case of the Built-up class the results showed higher accuracy than those of when only the SPOT XS image was used. From this result I can show that overall accuracy was increased slightly but the spatial distribution of classes was visibly improved.

  • PDF

Image Retrieval Using Spacial Color Correlation and Local Texture Characteristics (칼라의 공간적 상관관계 및 국부 질감 특성을 이용한 영상검색)

  • Sung, Joong-Ki;Chun, Young-Deok;Kim, Nam-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.103-114
    • /
    • 2005
  • This paper presents a content-based image retrieval (CBIR) method using the combination of color and texture features. As a color feature, a color autocorrelogram is chosen which is extracted from the hue and saturation components of a color image. As a texture feature, BDIP(block difference of inverse probabilities) and BVLC(block variation of local correlation coefficients) are chosen which are extracted from the value component. When the features are extracted, the color autocorrelogram and the BVLC are simplified in consideration of their calculation complexity. After the feature extraction, vector components of these features are efficiently quantized in consideration of their storage space. Experiments for Corel and VisTex DBs show that the proposed retrieval method yields 9.5% maximum precision gain over the method using only the color autucorrelogram and 4.0% over the BDIP-BVLC. Also, the proposed method yields 12.6%, 14.6%, and 27.9% maximum precision gains over the methods using wavelet moments, CSD, and color histogram, respectively.

3D Building Model Texture Extraction from Multiple Spatial Imagery for 3D City Modeling (3차원 도시모델 생성을 위한 다중 공간영상 기반 건물 모델 텍스쳐 추출)

  • Oh, Jae-Hong;Shin, Sung-Woong;Park, Jin-Ho;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.4
    • /
    • pp.347-354
    • /
    • 2007
  • Since large portal service providers started web services for 3D city models around the world using spatial imagery, the competition has been getting intense to provide the models with the higher quality and accuracy. The building models are the most in number among the 3D city model objects, and it takes much time and money to create realistic model due to various shapes and visual appearances of building object. The aforementioned problem is the most significant limitation for the service and the update of the 3D city model of the large area. This study proposed a method of generating realistic 3D building models with quick and economical texture mapping using multiple spatial imagery such as aerial photos or satellite images after reconstructed geometric models of buildings from building layers in digital maps. Based on the experimental results, the suggested method has effectiveness for the generation of the 3D building models using various air-borne imagery and satellite imagery quickly and economically.

Content-based Image Retrieval Using Texture Features Extracted from Local Energy and Local Correlation of Gabor Transformed Images

  • Bu, Hee-Hyung;Kim, Nam-Chul;Lee, Bae-Ho;Kim, Sung-Ho
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1372-1381
    • /
    • 2017
  • In this paper, a texture feature extraction method using local energy and local correlation of Gabor transformed images is proposed and applied to an image retrieval system. The Gabor wavelet is known to be similar to the response of the human visual system. The outputs of the Gabor transformation are robust to variants of object size and illumination. Due to such advantages, it has been actively studied in various fields such as image retrieval, classification, analysis, etc. In this paper, in order to fully exploit the superior aspects of Gabor wavelet, local energy and local correlation features are extracted from Gabor transformed images and then applied to an image retrieval system. Some experiments are conducted to compare the performance of the proposed method with those of the conventional Gabor method and the popular rotation-invariant uniform local binary pattern (RULBP) method in terms of precision vs recall. The Mahalanobis distance is used to measure the similarity between a query image and a database (DB) image. Experimental results for Corel DB and VisTex DB show that the proposed method is superior to the conventional Gabor method. The proposed method also yields precision and recall 6.58% and 3.66% higher on average in Corel DB, respectively, and 4.87% and 3.37% higher on average in VisTex DB, respectively, than the popular RULBP method.

A Study on the Improvement of Skin Loss Area in Skin Color Extraction for Face Detection (얼굴 검출을 위한 피부색 추출 과정에서 피부색 손실 영역 개선에 관한 연구)

  • Kim, Dong In;Lee, Gang Seong;Han, Kun Hee;Lee, Sang Hun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.1-8
    • /
    • 2019
  • In this paper, we propose an improved facial skin color extraction method to solve the problem that facial surface is lost due to shadow or illumination in skin color extraction process and skin color extraction is not possible. In the conventional HSV method, when facial surface is brightly illuminated by light, the skin color component is lost in the skin color extraction process, so that a loss area appears on the face surface. In order to solve these problems, we extract the skin color, determine the elements in the H channel value range of the skin color in the HSV color space among the lost skin elements, and combine the coordinates of the lost part with the coordinates of the original image, To minimize the number of In the face detection process, the face was detected using the LBP Cascade Classifier, which represents texture feature information in the extracted skin color image. Experimental results show that the proposed method improves the detection rate and accuracy by 5.8% and 9.6%, respectively, compared with conventional RGB and HSV skin color extraction and face detection using the LBP cascade classifier method.

Perceiving the Orientation of Linear Edges from Kinetic Occlusion (운동 중첩에 의한 직선적 윤곽의 방위 지각)

  • Jung, Woo-Hyun;Chung, Chan-Sup
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.3
    • /
    • pp.151-175
    • /
    • 2006
  • A common constraint-range model was suggested to explain the extraction of edge orientation from kinetic occlusion and five experiments were performed to verify this model. Results of the experiments show that the subjects' ability to identify the orientation of the kinetic edge increases as the angle of common constraint-range decreases. If the common constraint-range was fixed, the number of occluded elements or the interval between them had no effect on the accuracy. These results indicate that in the edge extraction process from kinetic occlusion, the angle of common constraint-range plays more important role than the density of background texture, supporting the common constraint-range model.

  • PDF

Multi-Level Segmentation of Infrared Images with Region of Interest Extraction

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.246-253
    • /
    • 2016
  • Infrared (IR) imaging has been researched for various applications such as surveillance. IR radiation has the capability to detect thermal characteristics of objects under low-light conditions. However, automatic segmentation for finding the object of interest would be challenging since the IR detector often provides the low spatial and contrast resolution image without color and texture information. Another hindrance is that the image can be degraded by noise and clutters. This paper proposes multi-level segmentation for extracting regions of interest (ROIs) and objects of interest (OOIs) in the IR scene. Each level of the multi-level segmentation is composed of a k-means clustering algorithm, an expectation-maximization (EM) algorithm, and a decision process. The k-means clustering initializes the parameters of the Gaussian mixture model (GMM), and the EM algorithm estimates those parameters iteratively. During the multi-level segmentation, the area extracted at one level becomes the input to the next level segmentation. Thus, the segmentation is consecutively performed narrowing the area to be processed. The foreground objects are individually extracted from the final ROI windows. In the experiments, the effectiveness of the proposed method is demonstrated using several IR images, in which human subjects are captured at a long distance. The average probability of error is shown to be lower than that obtained from other conventional methods such as Gonzalez, Otsu, k-means, and EM methods.