• 제목/요약/키워드: Texture Filter

검색결과 105건 처리시간 0.024초

결함검출을 위한 실험적 연구

  • 목종수
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1996년도 춘계학술대회 논문집
    • /
    • pp.24-29
    • /
    • 1996
  • The seniconductor, which is precision product, requires many inspection processes. The surface conditions of the semiconductor chip effect on the functions of the semiconductors. The defects of the chip surface is crack or void. Because general inspection method requires many inspection processes, the inspection system which searches immediately and preciselythe defects of the semiconductor chip surface. We propose the inspection method by using the computer vision system. This study presents an image processing algorithm for inspecting the surface defects(crack, void)of the semiconductor test samples. The proposed image processing algorithm aims to reduce inspection time, and to analyze those experienced operator. This paper regards the chip surface as random texture, and deals with the image modeling of randon texture image for searching the surface defects. For texture modeling, we consider the relation of a pixel and neighborhood pixels as noncasul model and extract the statistical characteristics from the radom texture field by using the 2D AR model(Aut oregressive). This paper regards on image as the output of linear system, and considers the fidelity or intelligibility criteria for measuring the quality of an image or the performance of the processing techinque. This study utilizes the variance of prediction error which is computed by substituting the gary level of pixel of another texture field into the two dimensional AR(autoregressive model)model fitted to the texture field, estimate the parameter us-ing the PAA(parameter adaptation algorithm) and design the defect detection filter. Later, we next try to study the defect detection search algorithm.

  • PDF

질감 필터를 이용한 눈 검출 (Eye Detection Using Texture Filters)

  • 박찬우;김용민;박기태;문영식
    • 전자공학회논문지CI
    • /
    • 제46권6호
    • /
    • pp.70-78
    • /
    • 2009
  • 본 논문에서는 눈 영역의 질감 및 구조적 특성을 고려한 두 가지 질감 필터들을 이용하여 눈 영역을 효과적으로 검출하는 방법을 제안한다. 인간의 눈 형태는 외형적으로 수평 방향으로 길고, 원형의 눈동자로 구성된 구조적 특성을 갖고 있다. 이 두가지 특성을 효율적으로 기술하는 질감 필터(Texture Filters)들로서 가보 필터(Gabor Filter)와 ART 기술자(Descriptor)가 사용된다. 가보 필터는 방향성 정보를 포함하고 있기 때문에, 수평 방향의 눈 형태 특성을 효과적으로 검출할 수 있다. 그리고 ART 기술자는 원형 모양의 특성을 갖는 눈동자를 검출하기 위해 사용되어진다. 본 논문에서는 효과적인 눈 영역을 검출하기 위하여, 첫 번째 단계에서 AdaBoost 분류기를 이용하여 얼굴 영역을 검출한다. 두 번째 단계는 검출된 얼굴 영역에 대해서 지역적인 조명 정규화 과정을 수행한다. 세 번째 단계에서는 두 가지의 질감 필터들을 이용하여 수평 방향과 원형 형태의 구조적 특성을 갖는 눈 후보영역을 검출하고, 마지막 단계에서는 검출된 눈 후보영역들 중에서 얼굴의 구조적인 특성을 가장 잘 표현하는 영역을 최적화된 눈 영역으로 추출한다. 제안한 알고리즘의 성능을 실험적으로 확인한 결과, 제안된 눈 검출 방법은 기존의 방법에 비해 정확률에서 2.9~4.4%의 향상된 검출 결과를 보인다.

경계 중요도 맵 및 영역 병합에 기반한 칼라 영상 분할 (Color Image Segmentation Based on Edge Salience Map and Region Merging)

  • 김성영
    • 한국컴퓨터정보학회논문지
    • /
    • 제12권3호
    • /
    • pp.105-113
    • /
    • 2007
  • 본 논문에서는 경계 중요도 맵과 영역 병합에 의한 영상 분할 방법을 제안한다. 경계 중요도 맵은 텍스쳐 경계 강도와 칼라 경계 강도의 조합에 의해 생성한다. 텍스쳐 경계 강도는 가버 필터 뱅크를 사용하여 다중 스케일과 방향에 따른 필터링 결과를 병합하여 생성하며 칼라 경계 강도는 HSI 칼라 모델의 H 성분에 대해 계산한다. 경계 중요 맵 영상에 대해서는 Watershed 변환을 통해 사전 영상 분할을 수행한다. Watershed 변환에 의한 영상 분할은 영역들이 과잉 분할되는 현상이 나타나므로 이를 개선하여 최종 영상 분할 결과를 생성한다. 이를 위해 우선 모폴로지 연산을 사용하여 경계 중요도 맵 영상에 대한 컨트라스트 향상과 마커 영역을 생성한다. 모폴로지 연산으로 과잉 분할 영역은 줄어들지만 여전히 상당수 존재하게 되므로 이를 극복하기 위해 영역 병합 과정을 수행한다. 영역 병합 단계에서는 영역 내부의 평균 칼라 및 가버 텍스쳐 벡터를 함께 사용함으로써 효과적으로 과잉 분할된 영역을 병합할 수 있도록 하였다. 제안한 방법은 다양한 자연 영상에 대해 실험하였으며 기존 방법과 결과를 비교하여 성능의 우수성을 확인하였다.

  • PDF

Support Vector Machine Based Diagnostic System for Thyroid Cancer using Statistical Texture Features

  • Gopinath, B.;Shanthi, N.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권1호
    • /
    • pp.97-102
    • /
    • 2013
  • Objective: The aim of this study was to develop an automated computer-aided diagnostic system for diagnosis of thyroid cancer pattern in fine needle aspiration cytology (FNAC) microscopic images with high degree of sensitivity and specificity using statistical texture features and a Support Vector Machine classifier (SVM). Materials and Methods: A training set of 40 benign and 40 malignant FNAC images and a testing set of 10 benign and 20 malignant FNAC images were used to perform the diagnosis of thyroid cancer. Initially, segmentation of region of interest (ROI) was performed by region-based morphology segmentation. The developed diagnostic system utilized statistical texture features derived from the segmented images using a Gabor filter bank at various wavelengths and angles. Finally, the SVM was used as a machine learning algorithm to identify benign and malignant states of thyroid nodules. Results: The SVMachieved a diagnostic accuracy of 96.7% with sensitivity and specificity of 95% and 100%, respectively, at a wavelength of 4 and an angle of 45. Conclusion: The results show that the diagnosis of thyroid cancer in FNAC images can be effectively performed using statistical texture information derived with Gabor filters in association with an SVM.

Feature Extraction in an Aerial Photography of Gimnyeong Sand Dune Area by Texture Filtering

  • Chang E.M.;Park K.;Jung I.K.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.613-616
    • /
    • 2004
  • To find the best way to distinguish sand dunes from urban building and rural patches, textural analysis has been performed in Kimnyeong sand dune, Jeju. An aerial photo was re-sampled into one-meter. Homomorphic filters were applied to the original sub-scene and then high-pass filtered one. The entropy filtered one proves to be the best extraction method after high pass filtered-homomorphic filters in urban areas. The spectral values of sand dune area were similar to open land in rural area. In contrast, the texture values of sand dune area are more homogeneous than those of open land in rural area.

  • PDF

Evaluation of the Impact of Iterative Reconstruction Algorithms on Computed Tomography Texture Features of the Liver Parenchyma Using the Filtration-Histogram Method

  • Pamela Sung;Jeong Min Lee;Ijin Joo;Sanghyup Lee;Tae-Hyung Kim;Balaji Ganeshan
    • Korean Journal of Radiology
    • /
    • 제20권4호
    • /
    • pp.558-568
    • /
    • 2019
  • Objective: To evaluate whether computed tomography (CT) reconstruction algorithms affect the CT texture features of the liver parenchyma. Materials and Methods: This retrospective study comprised 58 patients (normal liver, n = 34; chronic liver disease [CLD], n = 24) who underwent liver CT scans using a single CT scanner. All CT images were reconstructed using filtered back projection (FBP), hybrid iterative reconstruction (IR) (iDOSE4), and model-based IR (IMR). On arterial phase (AP) and portal venous phase (PVP) CT imaging, quantitative texture analysis of the liver parenchyma using a single-slice region of interest was performed at the level of the hepatic hilum using a filtration-histogram statistic-based method with different filter values. Texture features were compared among the three reconstruction methods and between normal livers and those from CLD patients. Additionally, we evaluated the inter- and intra-observer reliability of the CT texture analysis by calculating intraclass correlation coefficients (ICCs). Results: IR techniques affect various CT texture features of the liver parenchyma. In particular, model-based IR frequently showed significant differences compared to FBP or hybrid IR on both AP and PVP CT imaging. Significant variation in entropy was observed between the three reconstruction algorithms on PVP imaging (p < 0.05). Comparison between normal livers and those from CLD patients revealed that AP images depend more strongly on the reconstruction method used than PVP images. For both inter- and intra-observer reliability, ICCs were acceptable (> 0.75) for CT imaging without filtration. Conclusion: CT texture features of the liver parenchyma evaluated using the filtration-histogram method were significantly affected by the CT reconstruction algorithm used.

A New Depth and Disparity Visualization Algorithm for Stereoscopic Camera Rig

  • Ramesh, Rohit;Shin, Heung-Sub;Jeong, Shin-Il;Chung, Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • 제8권6호
    • /
    • pp.645-650
    • /
    • 2010
  • In this paper, we present the effect of binocular cues which plays crucial role for the visualization of a stereoscopic or 3D image. This study is useful in extracting depth and disparity information by image processing technique. A linear relation between the object distance and the image distance is presented to discuss the cause of cybersickness. In the experimental results, three dimensional view of the depth map between the 2D images is shown. A median filter is used to reduce the noises available in the disparity map image. After the median filter, two filter algorithms such as 'Gabor' filter and 'Canny' filter are tested for disparity visualization between two images. The 'Gabor' filter is to estimate the disparity by texture extraction and discrimination methods of the two images, and the 'Canny' filter is used to visualize the disparity by edge detection of the two color images obtained from stereoscopic cameras. The 'Canny' filter is better choice for estimating the disparity rather than the 'Gabor' filter because the 'Canny' filter is much more efficient than 'Gabor' filter in terms of detecting the edges. 'Canny' filter changes the color images directly into color edges without converting them into the grayscale. As a result, more clear edges of the stereo images as compared to the edge detection by 'Gabor' filter can be obtained. Since the main goal of the research is to estimate the horizontal disparity of all possible regions or edges of the images, thus the 'Canny' filter is proposed for decipherable visualization of the disparity.

An Improved Defect Detection Algorithm of Jean Fabric Based on Optimized Gabor Filter

  • Ma, Shuangbao;Liu, Wen;You, Changli;Jia, Shulin;Wu, Yurong
    • Journal of Information Processing Systems
    • /
    • 제16권5호
    • /
    • pp.1008-1014
    • /
    • 2020
  • Aiming at the defect detection quality of denim fabric, this paper designs an improved algorithm based on the optimized Gabor filter. Firstly, we propose an improved defect detection algorithm of jean fabric based on the maximum two-dimensional image entropy and the loss evaluation function. Secondly, 24 Gabor filter banks with 4 scales and 6 directions are created and the optimal filter is selected from the filter banks by the one-dimensional image entropy algorithm and the two-dimensional image entropy algorithm respectively. Thirdly, these two optimized Gabor filters are compared to realize the common defect detection of denim fabric, such as normal texture, miss of weft, hole and oil stain. The results show that the improved algorithm has better detection effect on common defects of denim fabrics and the average detection rate is more than 91.25%.

Content-Based Image Retrieval Using Combined Color and Texture Features Extracted by Multi-resolution Multi-direction Filtering

  • Bu, Hee-Hyung;Kim, Nam-Chul;Moon, Chae-Joo;Kim, Jong-Hwa
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.464-475
    • /
    • 2017
  • In this paper, we present a new texture image retrieval method which combines color and texture features extracted from images by a set of multi-resolution multi-direction (MRMD) filters. The MRMD filter set chosen is simple and can be separable to low and high frequency information, and provides efficient multi-resolution and multi-direction analysis. The color space used is HSV color space separable to hue, saturation, and value components, which are easily analyzed as showing characteristics similar to the human visual system. This experiment is conducted by comparing precision vs. recall of retrieval and feature vector dimensions. Images for experiments include Corel DB and VisTex DB; Corel_MR DB and VisTex_MR DB, which are transformed from the aforementioned two DBs to have multi-resolution images; and Corel_MD DB and VisTex_MD DB, transformed from the two DBs to have multi-direction images. According to the experimental results, the proposed method improves upon the existing methods in aspects of precision and recall of retrieval, and also reduces feature vector dimensions.

가보필터기반 얼굴인식에서의 유동적 Jet Point Setting (Flexible Jet Point Setting In Gabor Filter Based Face Recognition)

  • 신하송;김병우;이정안;김민기
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 Ⅳ
    • /
    • pp.2032-2035
    • /
    • 2003
  • This paper focused on the possibility of face recognition using Flexible let Point Setting method in Gabor Filter Based Face Recognition. Gabor Filter is very sensible to the Texture variation. Therefore, any little change in the face expression or rotation of posture make recognition rate down significantly. A suggested solution for this problem is the Flexible Jet Point Setting. A significant effect of this method is that the number of Jet Point has been reduced from over 150 to under 30 even though the change of recognition rate between two methods is neglectable, Furthermore a set of feature values which results from a set of Gabor filtering became insensible to face variation such as expression, rotation, and light effect. Retinex Algorithm which has been developed by NASA are used as pre-processing.

  • PDF