• 제목/요약/키워드: Texture Detection

검색결과 237건 처리시간 0.021초

건물 DEM 생성을 위한 경계검출법 개발 (Development of the Building Boundary Detection for Building DEM Generation)

  • 유환희;손덕재;김성우
    • 한국측량학회지
    • /
    • 제17권4호
    • /
    • pp.421-429
    • /
    • 1999
  • 21세기에는 전 세계인구의 70%가 도시에서 생활할 것으로 예상되며, 이러한 도시화는 도시관리를 위해 GIS와 더불어 건물 DEM과 정사투영영상에 대한 요구가 증대될 것이다. 건물 DEM을 생성하기 위해서는 건물의 형태를 나타내는 경계선을 검출해야 한다. 이를 위해서 일반적으로 자동과 반자동 건물 추출법을 사용한다. 그러나 자동 검출법을 항공사진에 직접 적용하면 지붕의 색깔이나 그림자 그리고 주변의 나무 등 때문에 정확한 건물 경계선을 추출하기 매우 어렵다. 이러한 문제점을 극복하기 위해 본 연구에서는 반자동 건물 추출법을 제시하였다. 건물 지붕의 색깔이 균일할 경우 지붕의 한 부분을 마우스로 클릭하여 건물경계를 찾도록 하였으며, 균일하지 않은 경우 건물의 모서리 부분을 클릭하여 건물 모서리점을 검출하도록 프로그램을 개발하였다. 건물 DEM은 영상정합에 의해 계산된 건물 높이와 건물 경계선을 이용하여 생성하였다.

  • PDF

R-CNN 기법을 이용한 건물 벽 폐색영역 추출 적용 연구 (Application Research on Obstruction Area Detection of Building Wall using R-CNN Technique)

  • 김혜진;이정민;배경호;어양담
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.213-225
    • /
    • 2018
  • 3차원 공간정보 구축을 위해 건물 텍스처를 촬영하는 과정에서 폐색영역 문제가 발생한다. 이를 해결하기 위해선 폐색영역을 자동 인식하여 이를 검출하고 텍스처를 자동 보완하는 자동화 기법 연구가 필요하다. 현실적으로 매우 다양한 구조물 형상과 폐색을 발생시키는 경우가 있으므로 이를 극복하는 대안들이 고려되고 있다. 본 연구는 최근 대두되고 있는 딥러닝 기반의 알고리즘을 이용하여 폐색지역 패턴화하고, 학습기반 폐색영역 자동 검출하는 접근을 시도한다. 영상 내 객체 추출에서 우수한 성과를 발표하는 Convolutional Neural Network (CNN) 기법의 향상된 알고리즘인 Faster Region-based Convolutional Network (R-CNN)과 Mask R-CNN 2가지를 이용하여, 건물 벽면 촬영 시 폐색을 유발하는 사람, 현수막, 차량, 신호등에 대한 자동 탐지하는 성능을 알아보기 위해 실험하고, Mask R-CNN의 미리 학습된 모델에 현수막을 학습시켜 자동탐지하는 실험을 통해 적용이 높은 결과를 확인할 수 있었다.

Fragile Watermarking Based on LBP for Blind Tamper Detection in Images

  • Zhang, Heng;Wang, Chengyou;Zhou, Xiao
    • Journal of Information Processing Systems
    • /
    • 제13권2호
    • /
    • pp.385-399
    • /
    • 2017
  • Nowadays, with the development of signal processing technique, the protection to the integrity and authenticity of images has become a topic of great concern. A blind image authentication technology with high tamper detection accuracy for different common attacks is urgently needed. In this paper, an improved fragile watermarking method based on local binary pattern (LBP) is presented for blind tamper location in images. In this method, a binary watermark is generated by LBP operator which is often utilized in face identification and texture analysis. In order to guarantee the safety of the proposed algorithm, Arnold transform and logistic map are used to scramble the authentication watermark. Then, the least significant bits (LSBs) of original pixels are substituted by the encrypted watermark. Since the authentication data is constructed from the image itself, no original image is needed in tamper detection. The LBP map of watermarked image is compared to the extracted authentication data to determine whether it is tampered or not. In comparison with other state-of-the-art schemes, various experiments prove that the proposed algorithm achieves better performance in forgery detection and location for baleful attacks.

An adaptive method of multi-scale edge detection for underwater image

  • Bo, Liu
    • Ocean Systems Engineering
    • /
    • 제6권3호
    • /
    • pp.217-231
    • /
    • 2016
  • This paper presents a new approach for underwater image analysis using the bi-dimensional empirical mode decomposition (BEMD) technique and the phase congruency information. The BEMD algorithm, fully unsupervised, it is mainly applied to texture extraction and image filtering, which are widely recognized as a difficult and challenging machine vision problem. The phase information is the very stability feature of image. Recent developments in analysis methods on the phase congruency information have received large attention by the image researchers. In this paper, the proposed method is called the EP model that inherits the advantages of the first two algorithms, so this model is suitable for processing underwater image. Moreover, the receiver operating characteristic (ROC) curve is presented in this paper to solve the problem that the threshold is greatly affected by personal experience when underwater image edge detection is performed using the EP model. The EP images are computed using combinations of the Canny detector parameters, and the binaryzation image results are generated accordingly. The ideal EP edge feature extractive maps are estimated using correspondence threshold which is optimized by ROC analysis. The experimental results show that the proposed algorithm is able to avoid the operation error caused by manual setting of the detection threshold, and to adaptively set the image feature detection threshold. The proposed method has been proved to be accuracy and effectiveness by the underwater image processing examples.

맘모그램 영상처리를 이용한 종양검출 알고리즘 (Tumor Detection Algorithm by using Mammogram Image Processing)

  • 송교혁;전민희;주원종;김기범
    • 한국생산제조학회지
    • /
    • 제22권3_1spc호
    • /
    • pp.496-503
    • /
    • 2013
  • Recently, the death rate owing to breast cancers has been increasing, and the occurrence age for breast cancers is lowering every year. Mammography is known to be a reliable detection method for breast cancers and works by detecting texture changes, calcifications, and other potential symptoms. In this research on breast cancer detection, candidate objects were detected by using image processing on mammograms, and feature analysis was used to classify candidate objects as benign tumors and malignant tumors. To find candidate objects, image pre-processing and binarization using multiple thresholds, and the grouping of micro-calcifications were used. More than 50 shape features and intensity features were used in the classification. The performance of the detection algorithm by using Euclidian distance method for benign tumors was 93%, and the classification error rate was approximately 2%.

Baggage Recognition in Occluded Environment using Boosting Technique

  • Khanam, Tahmina;Deb, Kaushik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권11호
    • /
    • pp.5436-5458
    • /
    • 2017
  • Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.

위성영상을 활용한 실시간 재난정보 처리 기법: 재난 탐지, 매핑, 및 관리 (Early Disaster Damage Assessment using Remotely Sensing Imagery: Damage Detection, Mapping and Estimation)

  • 정명희
    • 전자공학회논문지CI
    • /
    • 제49권2호
    • /
    • pp.90-95
    • /
    • 2012
  • 위성영상은 광범위한 지역에 걸쳐 실시간으로 정확한 지표 상태에 대한 정보를 수집할 수 있어 재난재해관리에도 효율적 수단으로 사용되고 있다. 특히 고해상도 영상은 1m급 이하 지표 물체를 탐지할 수 있어 도심지역 정보 획득에 매우 유용하다. 본 논문에는 재난 발생 시 고해상도 위성영상으로부터 변화탐지 기법을 사용하여 피해를 탐지하고 피해정보를 추출하는 방법론이 제안되었다. 사용된 영상분석기법은 텍스쳐 정보를 이용하여 시간적 변화를 탐지하는 기법으로 특징 추출과 변화탐지 단계로 구성되어있다. 특징 추출 단계에서는 wavelet과 GLCM을 이용하여 텍스쳐가 추출되었고 변화탐지 단계에서는 영역간 텍스쳐의 상관관계를 이용한 분류기법이 사용되었다. 제안된 방법은 고해상도 위성영상을 사용하여 지진피해지역을 탐지하는 예에 적용되어 테스트 되었다.

Detection and Recognition of Vehicle License Plates using Deep Learning in Video Surveillance

  • Farooq, Muhammad Umer;Ahmed, Saad;Latif, Mustafa;Jawaid, Danish;Khan, Muhammad Zofeen;Khan, Yahya
    • International Journal of Computer Science & Network Security
    • /
    • 제22권11호
    • /
    • pp.121-126
    • /
    • 2022
  • The number of vehicles has increased exponentially over the past 20 years due to technological advancements. It is becoming almost impossible to manually control and manage the traffic in a city like Karachi. Without license plate recognition, traffic management is impossible. The Framework for License Plate Detection & Recognition to overcome these issues is proposed. License Plate Detection & Recognition is primarily performed in two steps. The first step is to accurately detect the license plate in the given image, and the second step is to successfully read and recognize each character of that license plate. Some of the most common algorithms used in the past are based on colour, texture, edge-detection and template matching. Nowadays, many researchers are proposing methods based on deep learning. This research proposes a framework for License Plate Detection & Recognition using a custom YOLOv5 Object Detector, image segmentation techniques, and Tesseract's optical character recognition OCR. The accuracy of this framework is 0.89.

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • 제4권3호
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

다중 가상 카메라의 실시간 파노라마 비디오 스트리밍 기법 (Real-Time Panoramic Video Streaming Technique with Multiple Virtual Cameras)

  • 옥수열;이석환
    • 한국멀티미디어학회논문지
    • /
    • 제24권4호
    • /
    • pp.538-549
    • /
    • 2021
  • In this paper, we introduce a technique for 360-degree panoramic video streaming with multiple virtual cameras in real-time. The proposed technique consists of generating 360-degree panoramic video data by ORB feature point detection, texture transformation, panoramic video data compression, and RTSP-based video streaming transmission. Especially, the generating process of 360-degree panoramic video data and texture transformation are accelerated by CUDA for complex processing such as camera calibration, stitching, blending, encoding. Our experiment evaluated the frames per second (fps) of the transmitted 360-degree panoramic video. Experimental results verified that our technique takes at least 30fps at 4K output resolution, which indicates that it can both generates and transmits 360-degree panoramic video data in real time.