Texture provides an important source of information about the local orientation of visible surfaces. An important task that arises in many computer vision systems is the reconstruction of three-dimensional depth information from two-dimensional images. The surface orientation of texel is classified by the Artificial Neural Network. The classification method to recognize the shape of 3D object with artificial neural network requires less developing time comparing to conventional method. The segmentation problem is assumed to be solved. The surface in view is smooth and is covered with repeated texture elements. In this study, 3D shape reconstruct using interpolation method.
대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
/
pp.330-330
/
2002
The combination of Multi-Beam Echo Sounder swath bathymetry and high-resolution towed Sidescan sonar provides a powerful method of examination about hydrographic survey results. In this paper, we investigate the fast method of 3D bathymetric reconstruction with the Digital Sidescan sonar(Benthos SIS 1500) and Shallow Multi-Beam Echo Sounder(Reson Seabat 8125). The Seabat 8125 is a 455KHz high resolution focused Multibeam echo sounder(MBES) system which measures the relative water depth across a wide swath perpendicular to a vessel's track. The Benthos SIS1500 is a chirp(nominal fq. 200KHz) sonar which map the topographical features & sediment texture of ocean bottom using backscattered amplitude. We generates the very large 3D bathymetric texture mapping model with the Helical System's HHViewer and describes additional benefits of combining MBES and Sidescan Sonar imagery, the removal of geometric distortions in the model and a deterministic sounding noise.
높은 효율의 태양전지의 개발은 태양전지 상용화에 꼭 필요한 일이다. 고효율 태양전지 개발을 위해 태양전시 시뮬레이션 프로그램인 PC1D를 이용하여 현재 많이 사용되고 있는 p-n 접합형 실리콘 태양전지의 변환효율에 영향을 주는 요소들, 특히 웨이퍼 표면의 texturing과 doping 농도를 변화시켜 최적의 요건을 찾고자하였다. texture depth = 3um, texture angle=$80^{\circ}$, base의 비저항=$0.1{\ell}{\cdot}cm$, emitter doping 농도=$5e+18cm^{-3}$에서 20.37%의 고효율을 얻을 수 있다.
High speed machining experiment on the inclined surfaces of hardened mold steel(STAVAX at hardness HRC 53) is carried out using the long-neck type ball endmill. Surface texture and roughness are compared fur various cutting conditions. Tool overhang length greatly affects the roughness of machined surface. It is found that, fur this type of long-neck endmill, the chip load should be carefully selected by reducing either the axial depth of cut or feedrate to avoid tool vibration. Feedrate adjustment is more appropriate method in terms of tool wear.
본 논문에서는 3차원 비디오 시스템에서 손상된 깊이영상으로 인하여 합성된 가상시점 영상에서 발생하는 경계 잡음을 효과적으로 제거하는 방식을 제안한다. 제안 방식에서는 손실 압축에 의한 깊이영상의 잡음으로부터 발생하는 경계 잡음의 특징을 분석하고, 이를 바탕으로 픽셀 도메인과 주파수 도메인에서의 convex set을 설정하여 해당 조건들을 반복적으로 사영시키는 projection onto convex sets (POCS) 기법을 활용하여 올바른 정보는 유지한 채 경계 잡음만을 제거한다. 이 논문에서 제안한 방식은 영상합성 과정에서 생성되는 컬러 및 깊이영상에 모두 적용하였다. 실험 결과 제안 기법은 경계 잡음을 효과적으로 제거하여 가상시점 영상의 화질을 향상시켰음을 확인하였다.
본 논문에서는 결합형 양방향 필터를 이용하여 깊이 영상을 실시간으로 보정하는 방법을 제안한다. 제안한 방법은 Kinect 깊이 카메라로부터 얻은 깊이 영상의 화질을 실시간으로 향상시키기 위해 GPU 내의 상수 메모리와 2차원 영상 처리에 적합한 텍스쳐 메모리를 사용한다. 또한, 단일 화소에 대한 결합형 양방향 필터 연산을 각 GPU 쓰레드(thread)에 할당한 다음 병렬로 처리하여 계산량을 현저히 감소시킨다. 그리고 깊이 영상의 품질을 더욱 높이기 위해 CUDA를 이용해 구현한 결합형 양방향 필터를 계층형 구조로 반복적으로 수행하여 폐색 영역이 채워진 깊이 영상을 얻을 수 있다. 실험 결과를 통해, 제안한 실시간 깊이 영상 보정 방법이 깊이 영상의 주관적 화질을 향상시키고, 초당 55 화면의 속도로 동작하는 것을 확인했다.
Recently, popularity of 3D technology has been growing significantly and it has many application parts in the various fields of industry. In order to overcome the limitations of 2D machine vision technologies based on 2D image, we need the 3D measurement technologies. There are many 3D measurement methods as such scanning probe microscope, phase shifting interferometry, confocal scanning microscope, white-light scanning interferometry, and so on. In this paper, we have used the extended depth of focus (EDF) algorithm among 3D measurement methods. The EDF algorithm is the method which extracts the 3D information from 2D images acquired by short range depth camera. In this paper, we propose the EDF algorithm using the edge informations of images and the average values of all pixel on z-axis to improve the performance of conventional method. To verify the performance of the proposed method, we use the various synthetic images made by point spread function(PSF) algorithm. We can correctly make a comparison between the performance of proposed method and conventional one because the depth information of these synthetic images was known. Through the experimental results, the PSNR of the proposed algorithm was improved about 1 ~ 30 dB than conventional method.
Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.
최근 깊이 영상 기반 합성 방법을 이용한 가상시점 합성 방법이 3차원 영상의 적용 분야에서 많이 사용되고 있다. 가상 시점 영상은 기존에 알고 있는 영상과 이와 관련된 깊이 영상 정보를 이용하여 카메라로 촬영 하지 않은 가상시점 영상을 생성하게 된다. 하지만 깊이 영상 기반 합성 방법을 이용해 가상시점 영상을 생성할 경우, 깊이 영상을 기반으로 합성하기 때문에 이미지 워핑 과정에서 폐색 영역이 발생하게 된다. 이러한 폐색 영역을 제거하기 위해 지금까지 다양한 홀 채움 방법들이 제안되어 왔다. 동일 색상영역 검색, 수평방향 보간 방법, 수평방향 보외 방법 그리고 다양한 인페인팅 방법들이 홀 채움 방법들로 제안되었다. 하지만 이러한 방법들을 사용하여 텍스쳐 영역의 홀을 제거할 경우 다른 종류의 간섭 현상이 발생하는 문제가 있다. 본 논문에서는 이러한 문제점을 해결하기 위해 다양한 방향성을 고려한 홀 채움 방법을 새롭게 제안하여 확장된 홀 영역을 효율적으로 채우는 방법을 설명한다. 제안된 방법들은 복잡한 텍스쳐들이 있는 배경부분에서 발생하는 홀 영역을 채울 때 성능 효율성을 나타낸다. 방향성을 고려한 홀 채움 방법은 픽셀 단위로 홀 채움 영역 값을 측정하는 과정에서 홀 영역의 주변 텍스쳐 픽셀 값들을 사용하게 된다. 제안한 방법을 이용해 가상시점 영상 합성 결과 발생하는 홀 영역을 기존의 홀 채움 방법보다 보다 더 효율적으로 채울 수 있는 것을 확인할 수 있었다.
본 논문에서는 CCD 카메라를 이용하여 획득된 영상들 간의 상대적인 열화(Blur)를 이용하여 물체의 3차원 형상 및 거리 정보를 얻을 수 있는 Depth From Defocus(DFD) 방법을 제안한다. 기존 논문의 주파수 영역에서 디포커스(Defocus) 연산자를 구하는 역필터링(Inverse filtering) 방법은 정확도가 떨어지고, 윈도우 효과(Windowing effects) 및 영상의 경계 효과(Border effect)와 같은 단점이 있었다. 또한 일반적인 영상은 비정체성 (Nonstationary)이기 때문에, 임의의 텍스처에 대한 가우시안(Gaussian) 및 라플라시안(Laplacian) 연산자 등의 필터를 이용하는 디포커스 방법의 추정값은 결과가 좋지 않다. 이러한 문제점들을 해결하기 위해 지역적 분석과 함께 다양한 크기의 윈도우를 제공하는 웨이블릿 변환을 이용한 DFD 방법을 제안한다. 복잡한 텍스처 특성을 갖는 영상의 깊이 추정을 위해서는 웨이블릿 분석을 사용하는 것이 효과적이다. Parseval의 정리에 의해 영상 간의 웨이블릿 에너지의 비율이 열화 계수(Blur parameter) 및 거리와 관련 있음을 증명하였다. 제안된 DFD 알고리즘의 성능을 계산하기 위해 실험은 종합적이며 실제적인 영상을 이용하여 행하였다. 본 논문의 DFD 방식은 기존의 DFD 방법보다 RMS 에러 측면에서 정확한 결과를 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.