• Title/Summary/Keyword: Textile composites

Search Result 167, Processing Time 0.041 seconds

The Effects of Poly(tetramethylene ether glycol) on the Physical Properties of Epoxy Resin

  • Song, Young-Jin;Lee, Seung-Goo;Baik, Doo-Hyun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.61-65
    • /
    • 1998
  • Epoxy resins are currently one of the most widely used thermoset polymers. Applications on epoxy-based materials range from common to structural adhesives as well as to matrix materials for high performance composites. The outstanding versatility of this resin can be related to the reactivity of the epoxy group, which can be opened by a large number of different chemical compounds, such a aliphatic and aromatic amines, anhydrides and poly-amides. (omitted)

  • PDF

Studies on the Interfacial Strength of Metal Fibers with Epoxy and PET Resins (금속섬유의 계면강도에 있어 후처리의 영향)

  • Park, Hyung-Ho;Joo, Chang-Whan
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.299-302
    • /
    • 2001
  • The unique physical properties of metal fibers have led to their wide application in different fields of machinery and electrical products. Especially, stainless steel(SS) fiber is used to the reinforcement of composites, textile and nonwoven materials for improving strength and electric properties. (omitted)

  • PDF

Mechanical Properties Prediction by Geometric Modeling of Plain Weave Composites (평직 복합재료의 기하학적 모델링을 통한 기계적 물성 예측)

  • Kim, Myung-jun;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.941-948
    • /
    • 2016
  • Textile composite materials have been widely applied in aerospace structures due to their various advantages such as high specific stiffnesses and strengths, better out-of-plane performances, impact and delamination resistances, and net shape fabrications. In this paper, a modified geometric model of repeating unit cell (RUC) is suggested based on the Naik's model for 2D plain weave textile composites. The RUC geometry is defined by various parameters. The proposed model considers another parameter which is a gap length between adjacent yarns. The effective stiffnesses are predicted by using the yarn slicing technique and stress averaging technique based on iso-strain assumption. And the stiffnesses of RUC are evaluated by adjusting the gap ratio and verified by comparing with Naik's model and experimental data for 2D plain weave composite specimens.

Thermal Conductivity Model of Twisted Yarn Composites (꼰 섬유 복합재료의 열전도도 예측모델)

  • 변준형;이상관;김병선;박종규;이재열
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.95-98
    • /
    • 2003
  • In woven or knitted preforms for composites, the yams are often twisted for avoiding damage due to the contact with the textile machine elements. When the preforms of twisted yams are used in carbon/carbon composites, the thermal conductivity of the composites varies depending upon the degree of the yarn twist. This paper presents a thermal conductivity model of spun yarn composites. The thermal-electrical analogy and the averaging technique have been adopted in this analysis. The model prediction has been correlated with experimental results in order to confirm the model predictability. Parametric study has also been conducted to examine the effect of the yam twist on the thermal conductivity of spun yarn composites.

  • PDF

Preparation of Polyurea Microcapsules Containing Phase Change Material and their Application on Fiber Composites (상전이물질을 함유한 폴리우레아 마이크로캡슐의 제조와 섬유복합소재에의 적용)

  • Kim, Hea-In;Jin, Xuan-Zhen;Choi, Hae-Wook;Park, Soo-Min
    • Textile Coloration and Finishing
    • /
    • v.19 no.1 s.92
    • /
    • pp.37-44
    • /
    • 2007
  • In this study, for textile use, the octadecane of phase change materials(PCM) was encapsulated in several micro-diameter shell which prevents leakage of the material during its liquid phase. Microencapsulated PCM(PM) was prepared with the different weight ratio of core material to wall material and by interfacial polymerization methods using polyurea as shell material. Phase stability for O/W emulsion of PCM and PVA aq. (PE) was evaluated by Turbiscan Lab. The capsule formation win identified using FT-IR. Physical properties of microcapsules including diameter, particle distribution, morphology were investigated. Thermal transport properties of suede treated with PM(SPM) were determined by KES-F7 system.

A Study of Structural Strength Characteristics for Application of Carbon Composites in Fishing Vessel Hull (어선 선체의 탄소섬유복합재 적용을 위한 구조 강도 특성 연구)

  • Hae-Soo Lee;Hyung-Won Lee;Seung-June Choi;Myung-Jun Oh
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.69-77
    • /
    • 2023
  • Recently, carbon composites have been applied to various fields. However, carbon composites have not been applied to the fishing vessel field due to its structure standards centered on glass composites. In this study, a structural strength evaluation study was conducted for the application of carbon composites in the fishing vessel field. Hull minimum thickness verification test and hull joint verification test were conducted. Compared to glass composites, the verification was based on equivalent or better performance. The results show that carbon composites can reduce the weight by 20% compared to glass composites. For hull joints, it was necessary to increase the thickness of the joint seam by the thickness of the hull to apply carbon composite. Through this study, a standard for the application of carbon composites to fishing vessel can be established.

Characterization of Nylon 6-Based Polypyrrole Composite Fabrics for EMI Shielding (전자파 차폐용 나일론 6-폴리피롤 복합직물의 특성)

  • Jang, Soon-Ho;Jeong, Sung-Hoon;Byun, Sung-Weon;Lee, Jun-Young;Joo, Jin-Soo;Kim, Seong-Hun
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.191-194
    • /
    • 2001
  • Among the many electrically conducting materials, Polypyrrole (PPy) is one of the most promising, intrinsically conducting polymers (ICP) due to its high conductivity, oxygen resistant and good environmental stability. To enhance the mechanical properties, the researchers have studied the polymer-textile composites. These composites can provide the both excellent physical properties and electrical conductivity. (omitted)

  • PDF

Development of Textile Metal Matrix Composites for Electronic Packaging (전자 패키징용 직조형 금속복합재료 개발)

  • 이상관;김진봉;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.183-186
    • /
    • 2000
  • A new textile metal matrix composite fur electronic packaging was developed and characterized. The thermal management materials consist of a plain woven carbon fabric as reinforcement and pure aluminum as matrix. The finite element method has been utilized in the analysis of thermal stress between the constituent components of packaging. The prototype part was manufactured by the liquid pressurizing method. The composite has CTE values of 4 to $5{\times}10^{-6}\;^{\circ}C^{-1}$10 in the range of $25^{\circ}C$ ~ 175$^{\circ}C$, resulting in good agreement with electronic materials such as Si and GaAs.

  • PDF

Derivation of Effective Material Properties of Reinforced Braid Layer Using Detailed 3-D Finite Element Model (상세 유한요소 모델을 이용한 섬유 보강사의 등가물성 유도)

  • Song, Jeong-In;Cho, Jin-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.11
    • /
    • pp.1752-1759
    • /
    • 2004
  • Reinforced braid layer (RBL) in automobile power steering hose plays an important role in power steering system. When the working oil is applied to the power steering hose, RBL suppresses rubber hose deformation from internal pressure and heat expansion. RBL is woven textile composites having a double-row structure of nylon cords twisted with the specific helix angle. In this paper, effective material properties of RBL are estimated using a detailed 3-D finite element model considering its complicated geometry. Numerical experiments based on a superposition method are carried out to simulate uniaxial tensile loading condition.