• Title/Summary/Keyword: Textile Wastewater

Search Result 141, Processing Time 0.023 seconds

Refractory Textile Wastewater Treatment Using Cell-Immobilized Polyethylene glycol Media (PEG 포괄고정화담체를 이용한 난분해성 염색폐수 처리)

  • Han, Duk-Gyu;Cho, Young-Jin;Bae, Woo-Keun;Hwang, Byung-Ho;Lee, Yong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.345-350
    • /
    • 2006
  • This study investigated the removal of recalcitrant organics in dyeing wastewater using a fluidized bed reactor(FBR) that contained cell-immobilized pellets. The pellets were manufactured and condensing the gel phase by mixing PEG-polymer and cells to form micro-porous PEG-polymer pellets whose size were ${\Phi}\;4mm{\times}H\;4mm$ on average. An industrial activated sludge without any pre-adaptation was used for the cell immobilization because it gave an equivalent removal efficiency to a pre-adapted sludges. The feed was obtained from an effluent of a biological treatment plant, which contained $SCOD_{Cr}$ of 330 mg/L and $SBOD_5$ of 20 mg/L. The $SCOD_{Cr}$ removal efficiency was over 45% and the effluent $COD_{Mn}$ concentration was less than 100 mg/L at HRTs from 6 to 24 hrs. The optimum HRT in the FBR was determined as 12 hrs considering the removal efficiency and cost. When a raw wastewater containing 768 mg/L of $COD_{Cr}$ was fed to the FBR, the effluent $COD_{Cr}$ concentration increased only slightly, giving a 70% of $COD_{Cr}$ removal or a 97% of $BCOD_5$ removal. This indicated that the FBR had an excellent capability of biodegradable organics removal also. In conclusion, the FBR could be applied to textile wastewater treatment in place of an activated sludge process.

Diversity and Abundance of Ammonia-Oxidizing Bacteria in Activated Sludge Treating Different Types of Wastewater

  • Baek, Kyung-Hwa;Park, Chul;Oh, Hee-Mock;Yoon, Byung-Dae;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.7
    • /
    • pp.1128-1133
    • /
    • 2010
  • The diversity and abundance of ammonia-oxidizing bacteria (AOB) in activated sludge were compared using PCR-DGGE and real-time PCR assays. Activated sludge samples were collected from five different types of wastewater treatment plants (WWTPs) mainly treating textile, paper, food, and livestock wastewater or domestic sewage. The composition of total bacteria determined by PCR-DGGE was highly diverse between the samples, whereas the community of AOB was similar across all the investigated activated sludge. Total bacterial numbers and AOB numbers in the aerated mixed liquor were in the range of $1.8{\times}10^{10}$ to $3.8{\times}10^{12}$ and $1.7{\times}10^6$ to $2.7{\times}10^{10}$ copies/l, respectively. Activated sludge from livestock, textile, and sewage treating WWTPs contained relatively high amoA gene copies (more than $10^5$ copies/l), whereas activated sludge from food and paper WWTPs revealed a low number of the amoA gene (less than $10^3$ copies/l). The value of the amoA gene copy effectively showed the difference in composition of bacteria in different activated sludge samples and this was better than the measurement with the AOB 16S rRNA or total 16S rRNA gene. These results suggest that the quantification of the amoA gene can help monitor AOB and ammonia oxidation in WWTPs.

Photocatalytic Membrane for Contaminants Degradation: A Review (오염물질 분해를 위한 광촉매 분리막: 총설)

  • Kahkahni, Rabea;Patel, Rajkumar;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • Growing industrialization leads to severe water pollution. Organic effluents from pharmaceuticals and textile industries released in wastewater adversely affect the environment and human health. Presence of antibiotics used for antibacterial treatment in wastewater leads to the growth of drug resistance bacteria, which is very harmful for human being. Various small organic molecules are used for the preparation of organic dye molecules in the textile industries. These molecules hardly degrade, which is present in the wastewater effluents from printing and dyeing industries. In order to address these problems, photoactive catalyst is embedded in the membrane and wastewater are passed through it. Through this process, organic molecules are photodegraded and at the same time, the degraded compounds are separated by the membrane. Titanium dioxide (TiO2) is a semiconductor which behave as excellent photocatalyst. Photocatalytic ability is enhanced by the making its composite with other transition metal oxide and incorporated into polymeric membrane. In this review, the degradation of dye and drug molecules by photocatalytic membrane are discussed.

Performance Analysis of Ink for Digital Textile Printing Using Natural Indigo (천연 인디고를 활용한 Digital Textile Printing용 잉크의 성능 분석)

  • Lee, Won Kyoung;Sung, Eun Ji;Moon, Joung Ryul;Ahn, In Yong;Yoon, Kwang Ho;Park, Yoon Cheol;Kim, Jong Hoon
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.202-209
    • /
    • 2021
  • Natural dyes are more expensive than synthetic dyes and the dyeing process, which is mainly immersion of dye, is complicated. For this reason, relatively small-scale production methods were predominant. However, awareness and interest in environmental sustainability is rising globally, and the use of synthetic dyes causes various environmental problems such as wastewater and CO2 emission, so the consumption of natural dyes is increasing. In addition, interest in digital textile printing, an eco-friendly dyeing method that can produce products of various designs and uses less water, is growing. In this study, natural indigo dye (Indigofera tinctoria) was used as a raw material for Digital Textile Printing ink, and 14C (Biocarbon) present in it was measured to confirm whether it was derived from natural ingredients. The performance was confirmed by testing the pH, viscosity, electrical conductivity, surface tension, and particle size analysis of natural indigo ink. In addition, the performance of natural indigo DTP ink and printing fabric was evaluated by inspecting the change in color fastness and corresponding index substances before and after digital printing with natural indigo DTP ink on textiles. Through this, the possibility of commercialization of DTP ink and printing fabric using natural indigo was confirmed.

Optimal Conditions for Chemical Coagulation of Dyeing-Complex Wastewater (종합염색폐수의 최적 화학응집조건)

  • 류원률;이호경;남범식;이영호;최장승;조무환
    • Textile Coloration and Finishing
    • /
    • v.12 no.2
    • /
    • pp.96-102
    • /
    • 2000
  • For the effective treatment of dyeing-complex wastewater, the most effective chemical coagulation method was studied. For the chemical coagulation of dyeing-complex wastewater, polyferric sulfate, $4Al_2(SO_4)_3$, PAC, ferrous sulfate, ferric sulfate, $FeCl_2$ and lime were used. It was investigated that polyferric sulfate was the most efficient coagulant. The optimal conditions and results for polyferric sulfate include the followings. When initial $COD_{Mn}$ concentration was 600mg/L, the optimal initial pH, dosage of coagulant, dosage of lime and PAA for $COD_{Mn}$ removal efficiency were 5, 1,200mg/L, 500mg/L and lmg/L, respectively. The optimal dosage of polyferric sulfate was increased proportionally to the influent $COD_{Mn}$ concentration.

  • PDF

Isolation of Novel White-rot Fungus and Effect for Decolorization of Dye Wastewater (새로운 염색폐수(染色廢水) 색도(色度) 제거(除去) 백색부후균(白色腐朽菌)의 분리(分離) 및 색도(色度) 제거(除去) 효과(效果))

  • Nam, Youn-Ku;Kwon, Hyuk-Ku;Lee, Bong-Joon;Lee, Jang-Hoon
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.4 s.91
    • /
    • pp.381-385
    • /
    • 2006
  • For decolorization of synthetic dyes, One fungus(HUE05-1) which was isolated from textile wastewater collected from industrial complex in Korea showed excellent ability of removing synthetic dyes. This fungus was identified as Basidiomycetes species by Internal Transcribed Spacers (ITS) sequence. Isolated fungi. HUE05-1 completely decolorized all dyes in both solid and liquid condition. The decolorization results were Reactive Orange-16, 97.12%; Reactive Blue-19, 92.09%; Reactive Blue-49, 97.04%; Reactive Yellow-145, 95.53%; Acid Orange-10, 99.18%; Acid Violet-43, 98.73%; Acid Blue-350, 94.71% and Disperse Blue-106, 90.07%.

Eco-friendly Textile Printing using Marigold Pigment(1): Effect of Binder Type and Mixing Ratio (메리골드 안료를 이용한 친환경 텍스타일 프린팅(1): 바인더의 종류와 혼합비율의 효과)

  • Yeo, Youngmi;Shin, Younsook
    • Textile Coloration and Finishing
    • /
    • v.31 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • Dyeing is an essential process for improving the value of textile products, but it is considered as one of industries causing pollution because of producing wastewater containing hazardous chemicals as well as using a large amount of water and energy. Global demand for greener technologies in textile field is getting much more attention and accordingly, the use of eco-friendly natural dyes is growing much larger. In textile printing, both dyes and pigments can be used. Pigment printing is more simple process and requires less water and less energy, compared to dye printing. In this study, the organic pigment was prepared from the marigold colorant. Samples were stencil printed, pressed(70℃, 3min) and then heat treated(150℃, 5min). The uptake of polyacrylic acid as a chemical binder was the lowest. In particular, marigold pigments were excellent in color and texture when Guar Gum and Sodium Alginate were used as binders. In addition, the light and washing fastness was rated very high as 4, 4/5 grades, and the rubbing fastness was also excellent as 3 and 4 grades.

A Study on the Scouring Effect and Dye-ability of Cotton Scoured and Dyed in A Single-bath (일욕 정련 염색에 따른 정련성 및 염색성 연구)

  • Kim, Ju-Hea;Kwan, Mi-Yeon;Choe, Eun-Kyung;Lee, Suk-Young
    • Textile Coloration and Finishing
    • /
    • v.19 no.3
    • /
    • pp.1-5
    • /
    • 2007
  • The advantage of enzyme scouring over alkali scouring is that the enzymatic process can be carried in a neutral pH, resulting in less damage on the fibers and a drastic reduction of wastewater. Since the pH of scouring bath is neutral, dyeing can be carried in the same bath. Four different types of scouring and dyeing in a single-bath were performed in this work: continuous scouring and dyeing in one-bath I and II, simultaneous scouring and dyeing in one-bath I and II. The difference between process I and II is the existence of an after-treatment process in the scouring. Dyeing was performed with three major colors(red, blue, yellow) and black to investigate the dye-ability. The absorbency of scoured and dyed fabrics was measured using gravimetric absorbency testing system. The fabric weight loss was measured after the treatment. Although the color depth for the three major colored fabrics treated in a single-bath was lower than the fabric scoured and dyed separately, the fabrics dyed with black did not show much difference. In addition, the absorbency of fabric treated in a single-bath was higher than the fabric treated separately.