자의적으로 구성한 기록 콘텐츠만으로는 이용자가 필요한 기간과 맥락에 대한 이해 없이 이용하게 됨으로써 주요한 경제정책기록에 효율적으로 접근하기에 어려움을 겪는다. 이러한 현재의 기록 서비스를 개선하기 위한 방안을 모색하고자 한다. 본 연구에서 1991년부터 2021년까지 30년간의 경제정책방향을 대상으로 경제정책기록에 텍스트 마이닝 기법을 활용하여 정부별 주요하게 다뤄진 경제 키워드와 변화과정을 도출하였다. 대책 배경, 주요 내용, 본문 텍스트를 수집하여 전처리를 진행한 후 텍스트 빈도분석, TF-IDF, 네트워크분석, 시계열 분석을 진행하였다. 분석 결과 '일자리', '경쟁력', '구조조정' 순으로 가장 높은 빈도수를 기록하였다. 정부별로 주요 키워드를 한눈에 볼 수 있었으며 '일자리', '부동산', '기업'의 연도별 상대비율을 시계열 순으로 분석하였다. 본 연구 결과를 바탕으로 향후 경제정책기록서비스의 발전과 저변확대를 위한 시사점을 제언하였다.
본 연구의 목적은 소셜네트워크서비스 주제에 관한 연구동향을 조사하는 것이다. 연구의 목적을 달성하기 위해서 웹오브사이언스 데이터베이스에서 제목에 'Social Network Service(SNS)'를 포함하는 1994년부터 2016년까지 출판된 논문 초록 308편을 분석 하였다. 본 연구에서는 텍스트마이닝 기법 중에서 최근 많이 적용되는 토픽모델링기법을 활용하였다. 토픽모델링 분석결과 20개의 토픽(신뢰, 지지, 만족 모델, 조직 지배구조, 모바일 시스템, 인터넷 마케팅, 대학생 효과, 의견 확산, 고객, 정보보호, 건강관리, 웹 협업, 방법, 학습 효과, 지식, 개인 이론, 아동 지지, 알고리즘, 미디어 참여, 문맥 시스템)이 도출되었다. 또한 시계열회귀분석 결과 모든 토픽은 상승 추세로 나타났다.
International Journal of Advanced Culture Technology
/
제12권3호
/
pp.278-283
/
2024
As the introductory content of televison series, the opening titles are crucial for helping the audience quickly grasp the tone of the narrative. With the continuous integration of the televison production industry and digital computer technology, motion graphics, featuring its unique dynamic graphic design, offers new avenues for title sequence creation. This paper dives into the application of motion graphics in the title sequences of noir genre television series, analyzing aspects such as visual style, content presentation, and narrative expression. By comparing early static text title sequences with motion graphics ones, this paper reveals the advantages of motion graphics in designing opening titles for noir genre television series and examines how it enhances visual impact and improves audience experience. This study not only enriches the creative techniques for title sequence design, but also provides valuable insights for future creations.
Journal of information and communication convergence engineering
/
제15권3호
/
pp.170-174
/
2017
Nowadays, people share and discuss scientific papers on social media such as the Web 2.0, big data, online forums, blogs, Twitter, Facebook and scholar community, etc. In addition to a variety of metrics such as numbers of citation, download, recommendation, etc., paper review text is also one of the effective resources for the study of scientific impact. The social media tools improve the research process: recording a series online scholarly behaviors. This paper aims to research the huge amount of paper reviews which have generated in the social media platforms to explore the implicit information about research papers. We implemented and shown the result of text mining on review texts using R language. And we found that Zika virus was the research hotspot and association research methods were widely used in 2016. We also mined the news review about one paper and derived the public opinion.
Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.
본 연구에서는 한국과 미국의 대표적인 거래소인 빗썸과 코인베이스의 비트코인 가격을 ARIMA와 순환 신경망(Recurrent Neural Network)을 이용해 예측하고, 이후 각 국가의 뉴스 기사를 이용해 분리 학습에 기반한 separated RNN 모형을 제안한다. separated RNN 모형은 학습 데이터를 가격의 추세 변화 점을 기준으로 분리해 학습시킨 후, 추세 변화점 별 뉴스 데이터를 활용해 용어 기반 사전을 구축한다. 이후 용어 기반 사전과 평가 데이터 기간의 뉴스 데이터를 이용해 예측할 데이터의 가격 추세 변화 점을 찾아낸 후, 매칭되는 모형을 적용해 예측 결과를 산출한다. 2017년 5월 22일부터 2020년 9월 16일까지의 가격 데이터를 사용해 분석한 결과, 제안된 separated RNN을 이용해 예측한 결과가 한국과 미국의 비트코인 가격 예측 모두에서 순환 신경망(RNN)을 이용해 예측한 결과보다 높은 예측 성과를 보였다. 본 연구는 시계열 예측 기법의 한계를 뉴스 데이터를 이용한 추세 변화 점 탐색을 통해 극복할 수 있고, 성과 향상을 위한 추후 다양한 시계열 예측 기법 및 추세 변화 점 탐색을 위한 다양한 텍스트 마이닝 기법을 적용해볼 필요가 있음을 시사한다.
본 연구의 목적은 최근 창조경제 또는 사회적 경제 관점에서 주목받고 있는 공유경제라는 키워드에 관해 현대 한국인들이 가지고 있는 대중적인 문화 및 사회적 인식, 즉 집단지성의 변화 추세를 조사하는 것이다. 이를 위해, 본 연구는 빅데이터 분석 관점의 텍스트 마이닝 기법을 적용하여 최근 5년 간 사회 문화적 집단지성의 객관적이고 가시적인 연간 변화 및 패턴들을 발견하고 이해하고자 한다. 월드 와이드 웹에서 크롤링(crawling) 기법과 구글링(googling)을 통해 분석에 필요한 2010년부터 2014년까지 축적된 상당한 양의 공유경제를 주제로 한 기존 문헌들의 시계열 웹 메타 데이터를 수집하였다. 결과적으로, 많은 양의 가공되지 않은 공유경제 키워드 관련 원 자료들은 R프로그래밍 분석을 통해 보다 의미 있는 가치 있는 '워드 클라우딩' 형태의 그래프나 그림으로 분석처리 되었다. 아직까지 시기적으로 공유경제에 관해 축적된 자료나 집단지성이 양적으로 미비함에도 불구하고, 본 연구는 지식처리 관점에서 시계열 빅데이터 분석을 수행한 선행연구라는 점에서 의미가 있다. 따라서 본 연구의 결과는 향후 산학 분야에서 공유경제 관련 시장분석과 소비자 행동학 관련 후속 연구들을 위해 1차 자료로서 학문적 시사점을 제공할 수 있다.
인터넷 기술이 발전함에 따라 온라인상의 데이터는 급격하게 증가하고 있고, 증가하는 데이터에 대해 점진적인 기계학습 기법을 통해 효율적으로 학습하기 위한 연구가 진행되고 있다. 온라인상의 문서는 대부분 게시일, 출판일과 같은 시계열적 정보를 포함하고 있고, 이를 분류에 반영한다면 효율적인 분류가 가능할 것이다. 본 연구에서는 웹 문서상에서 나타나는 어휘의 시계열적 변화를 분석하였고, 분석한 시계열 정보를 기반으로 데이터 집합을 분할하여 효율적인 분류 학습 기법을 제안한다. 실험 및 검증을 위해 온라인상의 뉴스 기사 100만 건을 시계열 정보를 포함하여 수집하였다. 수집된 데이터를 바탕으로 데이터 집합을 분할하여 $Na{\ddot{i}}ve$ Bayes 및 SVM 분류기를 사용하여 실험을 진행하였고, 각 모델에서 전체 데이터 집합 학습 대비 최대 2.02% 포인트, 2.32% 포인트의 성능 향상을 확인하였다. 본 연구를 통해 시계열적 어휘의 변화를 분류에 반영하여 분류의 성능을 향상시킬 수 있음을 확인하였다.
본 논문은 드라마 사전제작과 스토리텔링의 관련성을 소셜 분석을 통해 살펴보고, 드라마의 스토리텔링이 어떤 점에 주안점을 두고 구조화되어야 할지를 jtbc의 <맨투맨>을 중심으로 살폈다. 사전제작 드라마에 대한 시청자들의 생각을 읽어내기 위해 뉴스를 배제하고 한 가지 주제에 집중하여 글을 올리는 블로그를 대상으로 하였으며, 사전제작과 드라마라는 단어를 포함한 2016. 12. 15~2017. 12. 15 사이의 블로그 67개를 선정하여 텍스트 마이닝을 수행하였다. 또한 사전제작 드라마이면서 작품의 스토리텔링에 문제를 지닌 것으로 판단되는 드라마 <맨투맨>에 대한 감성분석을 수행하였다. 블로그 텍스트 추출과 텍스트 마이닝은 OutWit Hub와 R을 이용하여 분석하였고, 좀 더 방대한 데이터를 대상으로 감성 분석을 하기 위해 소셜 메트릭스에서 제공하는 도구를 활용하였다. 감성분석 결과, <맨투맨>에서 시청자들은 김설우와 차도하의 로맨스에 공감하지 못했고 그것이 여성인물의 개연성 부족에서 비롯되었다는 해석이 도출되었다. 따라서 드라마의 성패는 사전제작 여부에 달려있는 것이라기보다 기획부터 제작에 이르는 스토리텔링의 과정이 얼마나 치밀하고 시청자의 공감을 얻도록 구조화되어 있느냐에 달려있다는 결론을 얻었다. 이러한 연구는 디지털 중심 스토리텔링 연구의 기반을 조성하고 문화 콘텐츠 산업의 전망과 이에 대한 교육을 수행하는 데 중요한 자료가 될 수 있으므로 앞으로도 지속적인 연구가 필요할 것이다.
본 연구는 고전 추리 소설 작가로 유명한 아서 코난 도일과 애거서 크리스티의 문체적 차이점을 데이터 분석을 통해 제시하고, 나아가 텍스트 마이닝에 입각한 문체 연구의 해석적 방법론을 제시하고자 시행되었다. 추리 소설의 핵심 요소인 사건과 인물에 더해 작가의 문법적인 집필 방식을 문체로 정의하고 분석을 시도하였다. 작가 별로 각 2권, 총 4권의 책을 선정하였으며 문장 단위로 텍스트를 나누어 데이터를 확보하였다. 각 문장에 따른 감성 점수를 부여한 뒤 페이지 진행에 따른 감성을 시각화하였으며, 페이지에 따라 토픽 모델링을 적용하여 소설 속 사건 진행 흐름을 파악할 수 있었다. 동시 발생 매트릭스(co-occurrence matrix)를 구성하고 네트워크 분석(Network Analysis)을 시행함으로써 사건이 진행되는 과정에서 인물들 간 관계의 변화를 확인할 수 있었다. 또한 전체 문장을 총 6가지 문체를 기준으로 문법적인 체계를 나누어 작가 간, 그리고 작품 간 집필 방식의 차이점을 확인하였다. 이러한 일련의 연구 과정은 문체에 대한 이해를 바탕으로 글 전체의 맥락을 파악할 수 있도록 도움을 줄 수 있으며, 나아가 기존에 개별적으로 진행되었던 문체 연구를 통합시킴으로써 문체 구조에 대한 이해를 도울 수 있다. 그리고 이러한 선행된 이해를 통해 온라인 텍스트를 비롯한 비정형 데이터 속 문체의 존재를 발견하고 구체화하는 작업에 기여할 수 있다. 뉴미디어를 포함한 온라인 텍스트를 심도 있게 분석하고자 하는 시도가 증가하고 있는 상황에서 해당 연구들과 연계를 통해 보다 의미 있는 온라인 텍스트 분석에 기여할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.