In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.
Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.
Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.
최근 많은 TV 영상에서 시청자의 시각적 편의와 이해를 고려하여 자막을 삽입하는 경우가 늘어나고 있다. 본 논문에서는 자막을 비디오 내 하단부에 위치하는 인위적으로 추가된 글자 영역으로 정의한다. 이러한 자막 영역의 추출은 비디오 정보 검색(video information retrieval)이나 비디오 색인(video indexing)과 같은 응용에서 글자 추출을 위한 첫 단계로 널리 쓰인다. 기존의 자막 영역 추출은 자막의 색, 자막과 배경의 자기 대비, 에지(edge), 글자 필터 등을 이용한 방법을 사용하였다. 그러나 비디오 영상내 자막이 갖는 낮은 해상도와 복잡한 배경으로 인해 자막 추출에 어려움이 있다. 이에 본 논문은 코너검출기(corner detector)를 이용한 효율적인 비디오 자막 영역 추출 방법을 제안하고자 한다. 제안하는 알고리즘은 해리스 코너 검출기를 이용한 코너 맵 생성, 코너 밀도를 이용한 자막 영역 후보군 추출, 레이블링(labeling)을 이용한 최종 자막 영역 결정, 노이즈(noise) 제거 및 영역 채우기의 네 단계로 구성된다. 제안하는 알고리즘은 색 정보를 이용하지 않기 때문에 여러 가지 색으로 표현되는 자막 영역 추출에 적용가능하며 글자 모양이 아닌 글자의 코너를 이용하기 때문에 언어의 종류에 관계없이 사용 될 수 있다. 또한 프레임간 자막 영역 업데이트를 통해 자막 영역 추출의 효율을 높였다. 다양한 영상에 대한 실험을 통해 제안하는 알고리즘이 효율적인 비디오 자막 영역 추출 방법임을 보이고자 한다.
자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.
본 논문은 이미지에서 효과적인 문자검출을 위해 색상단순화 및 윤곽선에서의 패턴 분석을 통한 문자 검출방법을 제안한다. 윤곽선 기반방법을 사용하는 문자검출 알고리즘은 단순한 배경의 이미지에서는 우수한 성능을 보이지만, 복잡한 배경의 이미지에서는 성능이 떨어지는 단점이 있다. 따라서 제안하는 방법은 복잡한 배경에서의 비문자영역을 최소화하기 위해 이미지 단순화 및 패턴분석을 통한 문자 검출 알고리즘을 제안한다. 먼저 이미지에서의 문자영역 부분을 검출하기 위하여 전처리 과정으로 K-means 군집화를 사용하여 이미지의 색상을 단순화하고, 색상 단순화 과정에서의 물체의 경계의 흐릿해짐을 개선하기 위해 고주파통과필터를 통해 물체의 경계를 강화한다. 그 후 모폴로지 기법의 팽창과 침식의 차이를 이용하여 물체의 윤곽선을 검출하고, 획득한 영역의 윤곽선 부분의 정보(높이, 너비 면적)를 구한 후 패턴분석을 통해 조건을 줌으로써 문자 후보영역을 판별하여 문자가 아닌 불필요한 영역(그림, 배경)을 제거한다. 최종 결과로 라벨링을 통해 불필요한 영역이 제거된 결과를 보여준다.
2차원 비디오를 3차원 스테레오 비디오로 변환할 때 기존 비디오에 삽입되어 있는 오버레이 텍스트(overlay text) 그래픽 영역으로 인해 발생하는 문제점을 이 논문에서 제시한다. 이를 해결하기 위한 방법으로 2차원 비디오를 오버레이 텍스트 그래픽 영역만 있는 영상과 오버레이 그래픽 영역이 추출되어 홀(hole)이 있는 영상으로 분리하여 처리하는 시나리오를 제안한다. 그리고 이 시나리오의 첫 번째 단계로 오버레이 텍스트 영역을 검색하고 추출하는 방법에 대해서만 이 논문에서 논한다. 비디오 시퀀스(sequence)가 입력되면 불필요한 연산 과정을 줄이기 위해 해리스 코너(Harris corner)로 얻어진 코너 밀도 맵을 이용하여 프레임 내 오버레이 텍스트의 존재 유무를 먼저 판단한다. 오버레이 텍스트가 있다면, 색(color) 정보와 움직임(motion) 정보를 결합하여 오버레이 텍스트 그래픽 영역을 검색하고 추출한다. 실험에서는 여러 가지 장르의 방송용 비디오에 대한 처리 결과를 보여주고 분석했다.
자연이미지에 포함된 텍스트는 많은 중요한 정보를 포함하고 있다. 그러므로 자연이미지에서 텍스트를 추출할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 문자-에지 맵 패턴 히스토그램 분석함으로서 텍스트 영역을 추출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하여 16가지 에지 맵을 생성하고, 에지 맵을 조합하여 문자 특징을 갖는 8가지 문자-에지 맵을 생성한다. 8가지 문자-에지 맵과 16가지 에지 맵을 이용하여 텍스트 후보 영역을 추출하고, 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하여 텍스트 후보 영역에 대한 검증을 수행하였다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지에서 텍스트 영역을 효과적으로 추출하였다.
실세계에서 텍스트가 포함 된 장면은 텍스트를 추출하고 인식하여 많은 정보를 얻을 수 있으므로, 장면의 텍스트 영역을 추출하고 인식하는 기술들은 꾸준히 발전하고 있다. 장면에서 텍스트 영역을 추출하는 기술은 크게 텍스쳐를 기반으로 하는 방법과 연결요소방법, 그리고 이 둘을 적절히 혼합하는 방법들로 구분 할 수 있다. 텍스처를 기반으로 하는 방법은 영상의 색상, 명도 등의 정보를 이용하여 텍스트가 다른 요소와는 다른 값을 갖는다는 것을 기반으로 한다. 연결 요소 방법은 장면의 각 화소마다 인접해 있는 유사 화소를 연결 요소로 만들어 기하학적인 특성을 이용하여 판별한다. 본 논문에서는 텍스트 영역 추출의 정확도를 높이기 위해 영상의 기울기를 검출하고 보정한 후 에지를 적응적으로 변경하는 방법을 제안한다. 제안 방법은 영상의 기울기를 보정한 후 텍스트가 포함 된 정확한 영역만 추출하기 때문에 MSER보다 15%, EEMSER보다 10% 더 정확하게 영역을 얻었다.
본 논문은 다양한 웹 이미지로부터 문자영역(text block)의 위치를 알아내고 문자영역을 추출하는 방법을 제안한다. 인터넷 사용자관점에서 볼 때, 웹 이미지에 포함되어 있는 문자정보는 중요한 정보이지만 최근까지 이 분야의 연구는 그리 활발하지 못했다. 본 연구에서 제안된 알고리즘은 문자의 경사방향(skew)과 문자의 크기나 폰트에 관한 사전 정보 없이 수행되어 질 수 있도록 제안되었다 폰트 스타일과 크기에 제약되지 않고 문자영역을 적합하게 추출하기 위해 유용한 에지 검출, 문자 클러스터링 영역으로 정의되는 문자의 고유한 특성을 위한 히스토그램을 사용하였다. 다수의 실험을 통하여 제안된 방법을 테스트하고 수용할 만한 결과를 도출했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.