• 제목/요약/키워드: Text region extraction

검색결과 47건 처리시간 0.103초

문자열 검출을 위한 슬라브 영역 추정 (Slab Region Localization for Text Extraction using SIFT Features)

  • 최종현;최성후;윤종필;구근휘;김상우
    • 전기학회논문지
    • /
    • 제58권5호
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

Text Location and Extraction for Business Cards Using Stroke Width Estimation

  • Zhang, Cheng Dong;Lee, Guee-Sang
    • International Journal of Contents
    • /
    • 제8권1호
    • /
    • pp.30-38
    • /
    • 2012
  • Text extraction and binarization are the important pre-processing steps for text recognition. The performance of text binarization strongly related to the accuracy of recognition stage. In our proposed method, the first stage based on line detection and shape feature analysis applied to locate the position of a business card and detect the shape from the complex environment. In the second stage, several local regions contained the possible text components are separated based on the projection histogram. In each local region, the pixels grouped into several connected components based on the connected component labeling and projection histogram. Then, classify each connect component into text region and reject the non-text region based on the feature information analysis such as size of connected component and stroke width estimation.

Caption Extraction in News Video Sequence using Frequency Characteristic

  • Youglae Bae;Chun, Byung-Tae;Seyoon Jeong
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -2
    • /
    • pp.835-838
    • /
    • 2000
  • Popular methods for extracting a text region in video images are in general based on analysis of a whole image such as merge and split method, and comparison of two frames. Thus, they take long computing time due to the use of a whole image. Therefore, this paper suggests the faster method of extracting a text region without processing a whole image. The proposed method uses line sampling methods, FFT and neural networks in order to extract texts in real time. In general, text areas are found in the higher frequency domain, thus, can be characterized using FFT The candidate text areas can be thus found by applying the higher frequency characteristics to neural network. Therefore, the final text area is extracted by verifying the candidate areas. Experimental results show a perfect candidate extraction rate and about 92% text extraction rate. The strength of the proposed algorithm is its simplicity, real-time processing by not processing the entire image, and fast skipping of the images that do not contain a text.

  • PDF

해리스 코너 검출기를 이용한 비디오 자막 영역 추출 (Text Region Extraction from Videos using the Harris Corner Detector)

  • 김원준;김창익
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제34권7호
    • /
    • pp.646-654
    • /
    • 2007
  • 최근 많은 TV 영상에서 시청자의 시각적 편의와 이해를 고려하여 자막을 삽입하는 경우가 늘어나고 있다. 본 논문에서는 자막을 비디오 내 하단부에 위치하는 인위적으로 추가된 글자 영역으로 정의한다. 이러한 자막 영역의 추출은 비디오 정보 검색(video information retrieval)이나 비디오 색인(video indexing)과 같은 응용에서 글자 추출을 위한 첫 단계로 널리 쓰인다. 기존의 자막 영역 추출은 자막의 색, 자막과 배경의 자기 대비, 에지(edge), 글자 필터 등을 이용한 방법을 사용하였다. 그러나 비디오 영상내 자막이 갖는 낮은 해상도와 복잡한 배경으로 인해 자막 추출에 어려움이 있다. 이에 본 논문은 코너검출기(corner detector)를 이용한 효율적인 비디오 자막 영역 추출 방법을 제안하고자 한다. 제안하는 알고리즘은 해리스 코너 검출기를 이용한 코너 맵 생성, 코너 밀도를 이용한 자막 영역 후보군 추출, 레이블링(labeling)을 이용한 최종 자막 영역 결정, 노이즈(noise) 제거 및 영역 채우기의 네 단계로 구성된다. 제안하는 알고리즘은 색 정보를 이용하지 않기 때문에 여러 가지 색으로 표현되는 자막 영역 추출에 적용가능하며 글자 모양이 아닌 글자의 코너를 이용하기 때문에 언어의 종류에 관계없이 사용 될 수 있다. 또한 프레임간 자막 영역 업데이트를 통해 자막 영역 추출의 효율을 높였다. 다양한 영상에 대한 실험을 통해 제안하는 알고리즘이 효율적인 비디오 자막 영역 추출 방법임을 보이고자 한다.

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에세 텍스트 영역 추출 (Text Region Extraction Using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;전병민
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1167-1174
    • /
    • 2006
  • 자연이미지로부터 텍스트 영역 추출은 자동차 번호판 인식 등과 같은 많은 응용프로그램에서 유용하다. 따라서 본 논문은 문자-에지 맵의 패턴 히스토그램을 이용한 텍스트 영역을 추출하는 방법을 제안한다. 16종류의 에지맵을 생성하고, 이것을 조합하여 문자 특징을 갖는 8종류 문자-에지 맵 특징을 추출한다. 문자-에지 맵의 특징을 이용하여 텍스트 후보 영역을 추출하고, 텍스트 후보 영역에 대한 검증은 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하였다. 실험결과 제안한 방법은 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지로부터 텍스트 영역을 효과적으로 추출하였다.

  • PDF

색상 단순화와 윤곽선 패턴 분석을 통한 이미지에서의 글자추출 (Text extraction in images using simplify color and edges pattern analysis)

  • 양재호;박영수;이상훈
    • 한국융합학회논문지
    • /
    • 제8권8호
    • /
    • pp.33-40
    • /
    • 2017
  • 본 논문은 이미지에서 효과적인 문자검출을 위해 색상단순화 및 윤곽선에서의 패턴 분석을 통한 문자 검출방법을 제안한다. 윤곽선 기반방법을 사용하는 문자검출 알고리즘은 단순한 배경의 이미지에서는 우수한 성능을 보이지만, 복잡한 배경의 이미지에서는 성능이 떨어지는 단점이 있다. 따라서 제안하는 방법은 복잡한 배경에서의 비문자영역을 최소화하기 위해 이미지 단순화 및 패턴분석을 통한 문자 검출 알고리즘을 제안한다. 먼저 이미지에서의 문자영역 부분을 검출하기 위하여 전처리 과정으로 K-means 군집화를 사용하여 이미지의 색상을 단순화하고, 색상 단순화 과정에서의 물체의 경계의 흐릿해짐을 개선하기 위해 고주파통과필터를 통해 물체의 경계를 강화한다. 그 후 모폴로지 기법의 팽창과 침식의 차이를 이용하여 물체의 윤곽선을 검출하고, 획득한 영역의 윤곽선 부분의 정보(높이, 너비 면적)를 구한 후 패턴분석을 통해 조건을 줌으로써 문자 후보영역을 판별하여 문자가 아닌 불필요한 영역(그림, 배경)을 제거한다. 최종 결과로 라벨링을 통해 불필요한 영역이 제거된 결과를 보여준다.

비디오 품질 향상 응용을 위한 오버레이 텍스트 그래픽 영역 검출 (Overlay Text Graphic Region Extraction for Video Quality Enhancement Application)

  • 이상희;박한성;안정일;온영상;조강현
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.559-571
    • /
    • 2013
  • 2차원 비디오를 3차원 스테레오 비디오로 변환할 때 기존 비디오에 삽입되어 있는 오버레이 텍스트(overlay text) 그래픽 영역으로 인해 발생하는 문제점을 이 논문에서 제시한다. 이를 해결하기 위한 방법으로 2차원 비디오를 오버레이 텍스트 그래픽 영역만 있는 영상과 오버레이 그래픽 영역이 추출되어 홀(hole)이 있는 영상으로 분리하여 처리하는 시나리오를 제안한다. 그리고 이 시나리오의 첫 번째 단계로 오버레이 텍스트 영역을 검색하고 추출하는 방법에 대해서만 이 논문에서 논한다. 비디오 시퀀스(sequence)가 입력되면 불필요한 연산 과정을 줄이기 위해 해리스 코너(Harris corner)로 얻어진 코너 밀도 맵을 이용하여 프레임 내 오버레이 텍스트의 존재 유무를 먼저 판단한다. 오버레이 텍스트가 있다면, 색(color) 정보와 움직임(motion) 정보를 결합하여 오버레이 텍스트 그래픽 영역을 검색하고 추출한다. 실험에서는 여러 가지 장르의 방송용 비디오에 대한 처리 결과를 보여주고 분석했다.

문자-에지 맵의 패턴 히스토그램을 이용한 자연이미지에서의 텍스트 영역 추출 (Text Region Extraction using Pattern Histogram of Character-Edge Map in Natural Images)

  • 박종천;황동국;이우람;권교현;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 추계학술발표논문집
    • /
    • pp.220-224
    • /
    • 2006
  • 자연이미지에 포함된 텍스트는 많은 중요한 정보를 포함하고 있다. 그러므로 자연이미지에서 텍스트를 추출할 수 있다면 다양한 분야에서 활용될 수 있다. 본 논문에서는 문자-에지 맵 패턴 히스토그램 분석함으로서 텍스트 영역을 추출하는 방법을 제안한다. 캐니-에지 검출기로 에지를 추출하여 16가지 에지 맵을 생성하고, 에지 맵을 조합하여 문자 특징을 갖는 8가지 문자-에지 맵을 생성한다. 8가지 문자-에지 맵과 16가지 에지 맵을 이용하여 텍스트 후보 영역을 추출하고, 문자-에지 맵의 패턴 히스토그램 및 텍스트 영역의 구조적 특징을 이용하여 텍스트 후보 영역에 대한 검증을 수행하였다. 제안한 방법은 다양한 종류의 자연이미지를 대상으로 실험하였고, 복잡한 배경, 다양한 글꼴, 다양한 텍스트 컬러로 구성된 자연이미지에서 텍스트 영역을 효과적으로 추출하였다.

  • PDF

장면 텍스트 영역 추출을 위한 적응적 에지 강화 기반의 기울기 검출 및 보정 (The Slope Extraction and Compensation Based on Adaptive Edge Enhancement to Extract Scene Text Region)

  • 백재경;장재혁;서영건
    • 디지털콘텐츠학회 논문지
    • /
    • 제18권4호
    • /
    • pp.777-785
    • /
    • 2017
  • 실세계에서 텍스트가 포함 된 장면은 텍스트를 추출하고 인식하여 많은 정보를 얻을 수 있으므로, 장면의 텍스트 영역을 추출하고 인식하는 기술들은 꾸준히 발전하고 있다. 장면에서 텍스트 영역을 추출하는 기술은 크게 텍스쳐를 기반으로 하는 방법과 연결요소방법, 그리고 이 둘을 적절히 혼합하는 방법들로 구분 할 수 있다. 텍스처를 기반으로 하는 방법은 영상의 색상, 명도 등의 정보를 이용하여 텍스트가 다른 요소와는 다른 값을 갖는다는 것을 기반으로 한다. 연결 요소 방법은 장면의 각 화소마다 인접해 있는 유사 화소를 연결 요소로 만들어 기하학적인 특성을 이용하여 판별한다. 본 논문에서는 텍스트 영역 추출의 정확도를 높이기 위해 영상의 기울기를 검출하고 보정한 후 에지를 적응적으로 변경하는 방법을 제안한다. 제안 방법은 영상의 기울기를 보정한 후 텍스트가 포함 된 정확한 영역만 추출하기 때문에 MSER보다 15%, EEMSER보다 10% 더 정확하게 영역을 얻었다.

웹 이미지로부터 이미지기반 문자추출 (Locating Text in Web Images Using Image Based Approaches)

  • Chin, Seongah;Choo, Moonwon
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.27-39
    • /
    • 2002
  • 본 논문은 다양한 웹 이미지로부터 문자영역(text block)의 위치를 알아내고 문자영역을 추출하는 방법을 제안한다. 인터넷 사용자관점에서 볼 때, 웹 이미지에 포함되어 있는 문자정보는 중요한 정보이지만 최근까지 이 분야의 연구는 그리 활발하지 못했다. 본 연구에서 제안된 알고리즘은 문자의 경사방향(skew)과 문자의 크기나 폰트에 관한 사전 정보 없이 수행되어 질 수 있도록 제안되었다 폰트 스타일과 크기에 제약되지 않고 문자영역을 적합하게 추출하기 위해 유용한 에지 검출, 문자 클러스터링 영역으로 정의되는 문자의 고유한 특성을 위한 히스토그램을 사용하였다. 다수의 실험을 통하여 제안된 방법을 테스트하고 수용할 만한 결과를 도출했다.

  • PDF