• Title/Summary/Keyword: Text features

Search Result 580, Processing Time 0.032 seconds

An Ensemble Classifier Based Method to Select Optimal Image Features for License Plate Recognition (차량 번호판 인식을 위한 앙상블 학습기 기반의 최적 특징 선택 방법)

  • Jo, Jae-Ho;Kang, Dong-Joong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.142-149
    • /
    • 2016
  • This paper proposes a method to detect LP(License Plate) of vehicles in indoor and outdoor parking lots. In restricted environment, there are many conventional methods for detecting LP. But, it is difficult to detect LP in natural and complex scenes with background clutters because several patterns similar with text or LP always exist in complicated backgrounds. To verify the performance of LP text detection in natural images, we apply MB-LGP feature by combining with ensemble machine learning algorithm in purpose of selecting optimal features of small number in huge pool. The feature selection is performed by adaptive boosting algorithm that shows great performance in minimum false positive detection ratio and in computing time when combined with cascade approach. MSER is used to provide initial text regions of vehicle LP. Throughout the experiment using real images, the proposed method functions robustly extracting LP in natural scene as well as the controlled environment.

Integrated Method for Text Detection in Natural Scene Images

  • Zheng, Yang;Liu, Jie;Liu, Heping;Li, Qing;Li, Gen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5583-5604
    • /
    • 2016
  • In this paper, we present a novel image operator to extract textual information in natural scene images. First, a powerful refiner called the Stroke Color Extension, which extends the widely used Stroke Width Transform by incorporating color information of strokes, is proposed to achieve significantly enhanced performance on intra-character connection and non-character removal. Second, a character classifier is trained by using gradient features. The classifier not only eliminates non-character components but also remains a large number of characters. Third, an effective extractor called the Character Color Transform combines color information of characters and geometry features. It is used to extract potential characters which are not correctly extracted in previous steps. Fourth, a Convolutional Neural Network model is used to verify text candidates, improving the performance of text detection. The proposed technique is tested on two public datasets, i.e., ICDAR2011 dataset and ICDAR2013 dataset. The experimental results show that our approach achieves state-of-the-art performance.

A Deep Learning-based Depression Trend Analysis of Korean on Social Media (딥러닝 기반 소셜미디어 한글 텍스트 우울 경향 분석)

  • Park, Seojeong;Lee, Soobin;Kim, Woo Jung;Song, Min
    • Journal of the Korean Society for information Management
    • /
    • v.39 no.1
    • /
    • pp.91-117
    • /
    • 2022
  • The number of depressed patients in Korea and around the world is rapidly increasing every year. However, most of the mentally ill patients are not aware that they are suffering from the disease, so adequate treatment is not being performed. If depressive symptoms are neglected, it can lead to suicide, anxiety, and other psychological problems. Therefore, early detection and treatment of depression are very important in improving mental health. To improve this problem, this study presented a deep learning-based depression tendency model using Korean social media text. After collecting data from Naver KonwledgeiN, Naver Blog, Hidoc, and Twitter, DSM-5 major depressive disorder diagnosis criteria were used to classify and annotate classes according to the number of depressive symptoms. Afterwards, TF-IDF analysis and simultaneous word analysis were performed to examine the characteristics of each class of the corpus constructed. In addition, word embedding, dictionary-based sentiment analysis, and LDA topic modeling were performed to generate a depression tendency classification model using various text features. Through this, the embedded text, sentiment score, and topic number for each document were calculated and used as text features. As a result, it was confirmed that the highest accuracy rate of 83.28% was achieved when the depression tendency was classified based on the KorBERT algorithm by combining both the emotional score and the topic of the document with the embedded text. This study establishes a classification model for Korean depression trends with improved performance using various text features, and detects potential depressive patients early among Korean online community users, enabling rapid treatment and prevention, thereby enabling the mental health of Korean society. It is significant in that it can help in promotion.

A Semantic Content Retrieval and Browsing System Based on Associative Relation in Video Databases

  • Bok Kyoung-Soo;Yoo Jae-Soo
    • International Journal of Contents
    • /
    • v.2 no.1
    • /
    • pp.22-28
    • /
    • 2006
  • In this paper, we propose new semantic contents modeling using individual features, associative relations and visual features for efficiently supporting browsing and retrieval of video semantic contents. And we implement and design a browsing and retrieval system based on the semantic contents modeling. The browsing system supports annotation based information, keyframe based visual information, associative relations, and text based semantic information using a tree based browsing technique. The retrieval system supports text based retrieval, visual feature and associative relations according to the retrieval types of semantic contents.

  • PDF

Vocabulary Expansion Technique for Advertisement Classification

  • Jung, Jin-Yong;Lee, Jung-Hyun;Ha, Jong-Woo;Lee, Sang-Keun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1373-1387
    • /
    • 2012
  • Contextual advertising is an important revenue source for major service providers on the Web. Ads classification is one of main tasks in contextual advertising, and it is used to retrieve semantically relevant ads with respect to the content of web pages. However, it is difficult for traditional text classification methods to achieve satisfactory performance in ads classification due to scarce term features in ads. In this paper, we propose a novel ads classification method that handles the lack of term features for classifying ads with short text. The proposed method utilizes a vocabulary expansion technique using semantic associations among terms learned from large-scale search query logs. The evaluation results show that our methodology achieves 4.0% ~ 9.7% improvements in terms of the hierarchical f-measure over the baseline classifiers without vocabulary expansion.

An Efficient Block Segmentation and Classification of a Document Image Using Edge Information (문서영상의 에지 정보를 이용한 효과적인 블록분할 및 유형분류)

  • 박창준;전준형;최형문
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.10
    • /
    • pp.120-129
    • /
    • 1996
  • This paper presents an efficient block segmentation and classification using the edge information of the document image. We extract four prominent features form the edge gradient and orientaton, all of which, and thereby the block clssifications, are insensitive to the background noise and the brightness variation of of the image. Using these four features, we can efficiently classify a document image into the seven categrories of blocks of small-size letters, large-size letters, tables, equations, flow-charts, graphs, and photographs, the first five of which are text blocks which are character-recognizable, and the last two are non-character blocks. By introducing the clumn interval and text line intervals of the document in the determination of th erun length of CRLA (constrained run length algorithm), we can obtain an efficient block segmentation with reduced memory size. The simulation results show that the proposed algorithm can rigidly segment and classify the blocks of the documents into the above mentioned seven categories and classification performance is high enough for all the categories except for the graphs with too much variations.

  • PDF

The Use of MSVM and HMM for Sentence Alignment

  • Fattah, Mohamed Abdel
    • Journal of Information Processing Systems
    • /
    • v.8 no.2
    • /
    • pp.301-314
    • /
    • 2012
  • In this paper, two new approaches to align English-Arabic sentences in bilingual parallel corpora based on the Multi-Class Support Vector Machine (MSVM) and the Hidden Markov Model (HMM) classifiers are presented. A feature vector is extracted from the text pair that is under consideration. This vector contains text features such as length, punctuation score, and cognate score values. A set of manually prepared training data was assigned to train the Multi-Class Support Vector Machine and Hidden Markov Model. Another set of data was used for testing. The results of the MSVM and HMM outperform the results of the length based approach. Moreover these new approaches are valid for any language pairs and are quite flexible since the feature vector may contain less, more, or different features, such as a lexical matching feature and Hanzi characters in Japanese-Chinese texts, than the ones used in the current research.

N-gram Feature Selection for Text Classification Based on Symmetrical Conditional Probability and TF-IDF (대칭 조건부 확률과 TF-IDF 기반 텍스트 분류를 위한 N-gram 특질 선택)

  • Choi, Woo-Sik;Kim, Seoung Bum
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.4
    • /
    • pp.381-388
    • /
    • 2015
  • The rapid growth of the World Wide Web and online information services has generated and made accessible a huge number of text documents. To analyze texts, selecting important keywords is an essential step. In this paper, we propose a feature selection method that combines a term frequency-inverse document frequency technique and symmetrical conditional probability. The proposed method can identify features with N-gram, the sequential multiword. The effectiveness of the proposed method is demonstrated through a real text data from the machine learning repository, University of California, Irvine.

A Study on the Text-Independent Speaker Recognition from the Vowel Extraction (모음 검출을 통한 텍스트 독립 화자인식에 관한 연구)

  • 김에녹;복혁규;김형래
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.82-91
    • /
    • 1994
  • In this thesis, we perform the experiment of speaker recognition by identifying vowels in the pronounciation of each speaker. In detail, we extract the vowels from the pronounciation of each speaker first. From it, we check the frequency energgy of 29 channels. After changing these into fuzzy values, we employ the fuzzy inference to recognize the speaker by text-dependent and text-independent methods. For this experiment, an algorithm of extracting vowels is developed, and newly introduced parameter is the frequency energy of the 29 channels computed from the extracted vowels. It shows the features of each speakers better than existing parameters. The advanced point of this paramter is to use the reference pattern only without the help of any codebook. As a rewult, test-dependent method showed about 95.5% rate of recognition, and text-independent method showed about 94.2% rate of recognition.

  • PDF

The Informative Support and Emotional Support Classification Model for Medical Web Forums using Text Analysis (의료 웹포럼에서의 텍스트 분석을 통한 정보적 지지 및 감성적 지지 유형의 글 분류 모델)

  • Woo, Jiyoung;Lee, Min-Jung;Ku, Yungchang
    • Journal of Information Technology Services
    • /
    • v.11 no.sup
    • /
    • pp.139-152
    • /
    • 2012
  • In the medical web forum, people share medical experience and information as patients and patents' families. Some people search medical information written in non-expert language and some people offer words of comport to who are suffering from diseases. Medical web forums play a role of the informative support and the emotional support. We propose the automatic classification model of articles in the medical web forum into the information support and emotional support. We extract text features of articles in web forum using text mining techniques from the perspective of linguistics and then perform supervised learning to classify texts into the information support and the emotional support types. We adopt the Support Vector Machine (SVM), Naive-Bayesian, decision tree for automatic classification. We apply the proposed model to the HealthBoards forum, which is also one of the largest and most dynamic medical web forum.