• Title/Summary/Keyword: Text features

Search Result 580, Processing Time 0.027 seconds

Chatting Pattern Based Game BOT Detection: Do They Talk Like Us?

  • Kang, Ah Reum;Kim, Huy Kang;Woo, Jiyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.11
    • /
    • pp.2866-2879
    • /
    • 2012
  • Among the various security threats in online games, the use of game bots is the most serious problem. Previous studies on game bot detection have proposed many methods to find out discriminable behaviors of bots from humans based on the fact that a bot's playing pattern is different from that of a human. In this paper, we look at the chatting data that reflects gamers' communication patterns and propose a communication pattern analysis framework for online game bot detection. In massive multi-user online role playing games (MMORPGs), game bots use chatting message in a different way from normal users. We derive four features; a network feature, a descriptive feature, a diversity feature and a text feature. To measure the diversity of communication patterns, we propose lightly summarized indices, which are computationally inexpensive and intuitive. For text features, we derive lexical, syntactic and semantic features from chatting contents using text mining techniques. To build the learning model for game bot detection, we test and compare three classification models: the random forest, logistic regression and lazy learning. We apply the proposed framework to AION operated by NCsoft, a leading online game company in Korea. As a result of our experiments, we found that the random forest outperforms the logistic regression and lazy learning. The model that employs the entire feature sets gives the highest performance with a precision value of 0.893 and a recall value of 0.965.

Spam Image Detection Model based on Deep Learning for Improving Spam Filter

  • Seong-Guk Nam;Dong-Gun Lee;Yeong-Seok Seo
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.289-301
    • /
    • 2023
  • Due to the development and dissemination of modern technology, anyone can easily communicate using services such as social network service (SNS) through a personal computer (PC) or smartphone. The development of these technologies has caused many beneficial effects. At the same time, bad effects also occurred, one of which was the spam problem. Spam refers to unwanted or rejected information received by unspecified users. The continuous exposure of such information to service users creates inconvenience in the user's use of the service, and if filtering is not performed correctly, the quality of service deteriorates. Recently, spammers are creating more malicious spam by distorting the image of spam text so that optical character recognition (OCR)-based spam filters cannot easily detect it. Fortunately, the level of transformation of image spam circulated on social media is not serious yet. However, in the mail system, spammers (the person who sends spam) showed various modifications to the spam image for neutralizing OCR, and therefore, the same situation can happen with spam images on social media. Spammers have been shown to interfere with OCR reading through geometric transformations such as image distortion, noise addition, and blurring. Various techniques have been studied to filter image spam, but at the same time, methods of interfering with image spam identification using obfuscated images are also continuously developing. In this paper, we propose a deep learning-based spam image detection model to improve the existing OCR-based spam image detection performance and compensate for vulnerabilities. The proposed model extracts text features and image features from the image using four sub-models. First, the OCR-based text model extracts the text-related features, whether the image contains spam words, and the word embedding vector from the input image. Then, the convolution neural network-based image model extracts image obfuscation and image feature vectors from the input image. The extracted feature is determined whether it is a spam image by the final spam image classifier. As a result of evaluating the F1-score of the proposed model, the performance was about 14 points higher than the OCR-based spam image detection performance.

Fuzzy-Membership Based Writer Identification from Handwritten Devnagari Script

  • Kumar, Rajiv;Ravulakollu, Kiran Kumar;Bhat, Rajesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.893-913
    • /
    • 2017
  • The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.

Arabic Text Clustering Methods and Suggested Solutions for Theme-Based Quran Clustering: Analysis of Literature

  • Bsoul, Qusay;Abdul Salam, Rosalina;Atwan, Jaffar;Jawarneh, Malik
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.4
    • /
    • pp.15-34
    • /
    • 2021
  • Text clustering is one of the most commonly used methods for detecting themes or types of documents. Text clustering is used in many fields, but its effectiveness is still not sufficient to be used for the understanding of Arabic text, especially with respect to terms extraction, unsupervised feature selection, and clustering algorithms. In most cases, terms extraction focuses on nouns. Clustering simplifies the understanding of an Arabic text like the text of the Quran; it is important not only for Muslims but for all people who want to know more about Islam. This paper discusses the complexity and limitations of Arabic text clustering in the Quran based on their themes. Unsupervised feature selection does not consider the relationships between the selected features. One weakness of clustering algorithms is that the selection of the optimal initial centroid still depends on chances and manual settings. Consequently, this paper reviews literature about the three major stages of Arabic clustering: terms extraction, unsupervised feature selection, and clustering. Six experiments were conducted to demonstrate previously un-discussed problems related to the metrics used for feature selection and clustering. Suggestions to improve clustering of the Quran based on themes are presented and discussed.

An End-to-End Sequence Learning Approach for Text Extraction and Recognition from Scene Image

  • Lalitha, G.;Lavanya, B.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.7
    • /
    • pp.220-228
    • /
    • 2022
  • Image always carry useful information, detecting a text from scene images is imperative. The proposed work's purpose is to recognize scene text image, example boarding image kept on highways. Scene text detection on highways boarding's plays a vital role in road safety measures. At initial stage applying preprocessing techniques to the image is to sharpen and improve the features exist in the image. Likely, morphological operator were applied on images to remove the close gaps exists between objects. Here we proposed a two phase algorithm for extracting and recognizing text from scene images. In phase I text from scenery image is extracted by applying various image preprocessing techniques like blurring, erosion, tophat followed by applying thresholding, morphological gradient and by fixing kernel sizes, then canny edge detector is applied to detect the text contained in the scene images. In phase II text from scenery image recognized using MSER (Maximally Stable Extremal Region) and OCR; Proposed work aimed to detect the text contained in the scenery images from popular dataset repositories SVT, ICDAR 2003, MSRA-TD 500; these images were captured at various illumination and angles. Proposed algorithm produces higher accuracy in minimal execution time compared with state-of-the-art methodologies.

Video Captioning with Visual and Semantic Features

  • Lee, Sujin;Kim, Incheol
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1318-1330
    • /
    • 2018
  • Video captioning refers to the process of extracting features from a video and generating video captions using the extracted features. This paper introduces a deep neural network model and its learning method for effective video captioning. In this study, visual features as well as semantic features, which effectively express the video, are also used. The visual features of the video are extracted using convolutional neural networks, such as C3D and ResNet, while the semantic features are extracted using a semantic feature extraction network proposed in this paper. Further, an attention-based caption generation network is proposed for effective generation of video captions using the extracted features. The performance and effectiveness of the proposed model is verified through various experiments using two large-scale video benchmarks such as the Microsoft Video Description (MSVD) and the Microsoft Research Video-To-Text (MSR-VTT).

On The Full-Text Database Retrieval and Indexing Language

  • Chang, Hye-Rhan
    • Journal of the Korean Society for information Management
    • /
    • v.4 no.1
    • /
    • pp.24-46
    • /
    • 1987
  • The recent growth of full-text database operations has brought new opportunities for subject access. The fundamental problem of subject access in the online environment is the indexing language and technology. The purpose of this paper is to identify the characteristics and capabilities of full-text retrieval as compared to traditional bibliographic retrieval. Retrieval performance of indexing languages, full-text systems features achieved so far, and the new role of a controlled vocabulary, are examined. This paper also includes a review of the research on full-text retrieval performance.

  • PDF

A method for text entry on a touch-screen keyboard based on the fuzzy touch scheme (퍼지터치를 이용한 터치스크린에서의 문자 입력 방법에 대한 연구)

  • Kwon, Sung-Hyuk;Lee, Dong-Hun;Chung, Min-K.
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.262-268
    • /
    • 2008
  • Recently, as the demand for multimedia services based on the wireless technologies and mobile devices increases, Full-touch screen mobile devices adopting touch screen keyboards are emerging to cope with the limited display size and take advantage of the flexibility in the design of user interfaces. However, the text entry task, which is one of the main features of the mobile devices, decreases the competitive advantages of the touch screen keyboards over the physical keyboards or keypads due to the lack of physical feedbacks and the frequent occurrence of mistyping. This study aims to introduce a novel text entry method named Fuzzy Touch and compare this method with the conventional text entry method on a touch screen keyboard in terms of the performance (time, number of touch) and the subjective ratings (ease of use, overall preference).

  • PDF

Improving Text Categorization with High Quality Bigrams (고품질 바이그램을 이용한 문서 범주화 성능 향상)

  • Lee, Chan-Do;Tan, Chade-Meng;Wang, Yuan-Fang
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.415-420
    • /
    • 2002
  • This paper presents an efficient text categorization algorithm that generates high quality bigrams by using the information gain metric, combined with various frequency thresholds. The bigrams, along with unigrams, are then given as features to a Naive Bayes classifier. The experimental results suggest that the bigrams, while small in number, can substantially contribute to improving text categorization. Upon close examination of the results, we conclude that the algorithm is most successful in correctly classifying more positive documents, but may cause more negative documents to be classified incorrectly.

Title Extraction from Book Cover Images Using Histogram of Oriented Gradients and Color Information

  • Do, Yen;Kim, Soo Hyung;Na, In Seop
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.95-102
    • /
    • 2012
  • In this paper, we present a technique to extract the title areas from book cover images. A typical book cover image may contain text, pictures, diagrams as well as complex and irregular background. In addition, the high variability of character features such as thickness, font, position, background and tilt of the text also makes the text extraction task more complicated. Therefore, we propose a two steps efficient method that uses Histogram of Oriented Gradients and color information to find the title areas. Firstly, text localization is carried out to find the title candidates. Finally, refinement process is performed to find the sufficient components of title areas. To obtain the best result, we also use other constraints about the size, ratio between the length and width of the title. We achieve encouraging results of extracted title regions from book cover images which prove the advantages and efficiency of the proposed method.