One of the purposes of Information Technology (IT) is to support human response to natural and social problems such as natural disasters and spread of disease, and to improve the quality of human life. Recent climate change has happened worldwide, natural disasters threaten the quality of life, and human safety is no longer guaranteed. IT must be able to support tasks related to disaster response, and more importantly, it should be used to predict and minimize future damage. In South Korea, the data related to the damage is checked out by each local government and then federal government aggregates it. This data is included in disaster reports that the federal government discloses by disaster case, but it is difficult to obtain raw data of the damage even for research purposes. In order to obtain data, information extraction may be applied to disaster reports. In the field of information extraction, most of the extraction targets are web documents, commercial reports, SNS text, and so on. There is little research on information extraction for government disaster reports. They are mostly text, but the structure of each sentence is very different from that of news articles and commercial reports. The features of the government disaster report should be carefully considered. In this paper, information extraction method for South Korea government reports in the word format is presented. This method is based on patterns and dictionaries and provides some additional ideas for tokenizing the damage representation of the text. The experiment result is F1 score of 80.2 on the test set. This is close to cutting-edge information extraction performance before applying the recent deep learning algorithms.
Journal of the Korean Society for Library and Information Science
/
v.39
no.2
/
pp.123-146
/
2005
This study aims to find consistent strategies for feature selection and feature weighting methods, which can improve the effectiveness and efficiency of kNN text classifier. Feature selection criteria and feature weighting methods are as important factor as classification algorithms to achieve good performance of text categorization systems. Most of the former studies chose conflicting strategies for feature selection criteria and weighting methods. In this study, the performance of several feature selection criteria are measured considering the storage space for inverted index records and the classification time. The classification experiments in this study are conducted to examine the performance of IDF as feature selection criteria and the performance of conventional feature selection criteria, e.g. mutual information, as feature weighting methods. The results of these experiments suggest that using those measures which prefer low-frequency features as feature selection criterion and also as feature weighting method. we can increase the classification speed up to three or five times without loosing classification accuracy.
$\ulcorner$Euibangyoochui醫方類聚$\lrcorner$ (1445) is regarded as a treasure-house of the knowledge of traditional oriental medicine which contains over 50,000 prescriptions and enormerous amount of medical information. Despite the importance and information contained in this book, it has been rarely used since it was not convenient to use this book. In this study, therefore, the establishment of database on $\ulcorner$Euibangyoochui$\lrcorner$ was carried out. Before the database establishment of $\ulcorner$Euibangyoochui$\lrcorner$ , basic works such as correction, interpretation, proofreading and translation of original text should be done. The results obtained in this study are summaried as follows : 1) During the course of studying the original text of $\ulcorner$Euibangyoochui$\lrcorner$ , the editing process and transmission of medical books in early Chosun dynasty was figured out. 2) For better correction, interpretation, proofreading and translation of $\ulcorner$Euibangyoochui$\lrcorner$ , $\ulcorner$Euibangyoochui$\lrcorner$ microfilms which are the collection of Japanese Royal Library (宮內廳 圖書寮) were obtained in this study. Through this process, the errors in the republication were able to be corrected. 3) Analyzing the organization and compilatory method of $\ulcorner$Euibangyoochui$\lrcorner$ is one of the basic requirements of understanding the scale of the whole. book and establishing database as a result. So the analysis results were used for the basic structuring of database. 4) $\ulcorner$Euibangyoochui$\lrcorner$ CD- ROM was designed in a way that the images of microfilms, original text and Korean translation can be compared by 3-D device. In addition, the convenience and proficiency of imaging the information and prescriptions of the text is one of the remarkable features of this CD-ROM.
AlSabban, Wesam H.;Alotaibi, Saud S.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
International Journal of Computer Science & Network Security
/
v.21
no.9
/
pp.281-291
/
2021
The Islamic jurisprudential legal system represents an essential component of the Islamic religion, that governs many aspects of Muslims' daily lives. This creates many questions that require interpretations by qualified specialists, or Muftis according to the main sources of legislation in Islam. The Islamic jurisprudence is usually classified into branches, according to which the questions can be categorized and classified. Such categorization has many applications in automated question-answering systems, and in manual systems in routing the questions to a specialized Mufti to answer specific topics. In this work we tackle the problem of automatic categorisation of Islamic jurisprudential legal questions using deep learning techniques. In this paper, we build a hierarchical deep learning model that first extracts the question text features at two levels: word and sentence representation, followed by a text classifier that acts upon the question representation. To evaluate our model, we build and release the largest publicly available dataset of Islamic questions and answers, along with their topics, for 52 topic categories. We evaluate different state-of-the art deep learning models, both for word and sentence embeddings, comparing recurrent and transformer-based techniques, and performing extensive ablation studies to show the effect of each model choice. Our hierarchical model is based on pre-trained models, taking advantage of the recent advancement of transfer learning techniques, focused on Arabic language.
Jo, Min-Seok;Chun, Hye-won;Han, Seong-Soo;Jeong, Chang-Sung
KIPS Transactions on Software and Data Engineering
/
v.11
no.1
/
pp.29-34
/
2022
We propose a novel network architecture and build dataset for recognizing clickable objects on mobile device screens. The data was collected based on clickable objects on the mobile device screen that have numerous resolution, and a total of 24,937 annotation data were subdivided into seven categories: text, edit text, image, button, region, status bar, and navigation bar. We use the Deconvolution Single Shot Detector as a baseline, the backbone network with Squeeze-and-Excitation blocks, the Single Shot Detector layer structure to derive inference results and the Feature pyramid networks structure. Also we efficiently extract features by changing the input resolution of the existing 1:1 ratio of the network to a 1:2 ratio similar to the mobile device screen. As a result of experimenting with the dataset we have built, the mean average precision was improved by up to 101% compared to baseline.
Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
/
v.7
no.2
/
pp.515-523
/
2017
In the training field where literature is used as a tool, some excerpts from its text are used, instead of its full text. Therefore, it is necessary to have empirical guidelines for which part of the text should be used as Memory-Hint, a part that reminds its reader of certain memory, and for how the text can be introduced effectively. For the study, Hesse's whole life and his literary characters were examined from a therapeutic perspective. First, while Hesse's life was reviewed and his characters were analyzed, Hesse was recognized for Self-therapeutic Life. He also lived a life of multimedia in which he practiced writing, painting, playing musical instruments, meditation, walking, etc. Second, Contents of Literature Therapy using Hesse's works were applied to the schizophrenic patients. Media used for the clinical study were mostly extracted from Hesse's works. They began to show interest in others and express their empathy on others, in addition to expressing their sentimental empathy on Hesse's texts. How effectively Hesse utilized multimedia during his lifetime will be good literary resources in helping improving modern-day people's mental health and curing their pathological problems.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.12
/
pp.3218-3241
/
2023
Financial fraud undermines the sustainable development of financial markets. Financial statements can be regarded as the key source of information to obtain the operating conditions of listed companies. Current research focuses more on mining financial digital data instead of looking into text data. However, text data can reveal emotional information, which is an important basis for detecting financial fraud. The audit opinion of the financial statement is especially the fair opinion of a certified public accountant on the quality of enterprise financial reports. Therefore, this research was carried out by using the data features of 4,153 listed companies' financial annual reports and audits of text opinions in the past six years, and the paper puts forward a financial fraud detection model integrating audit opinions. First, the financial data index database and audit opinion text database were built. Second, digitized audit opinions with deep learning Bert model was employed. Finally, both the extracted audit numerical characteristics and the financial numerical indicators were used as the training data of the LightGBM model. What is worth paying attention to is that the imbalanced distribution of sample labels is also one of the focuses of financial fraud research. To solve this problem, data enhancement and Focal Loss feature learning functions were used in data processing and model training respectively. The experimental results show that compared with the conventional financial fraud detection model, the performance of the proposed model is improved greatly, with Area Under the Curve (AUC) and Accuracy reaching 81.42% and 78.15%, respectively.
The purpose of this study is to investigate the aspect of variation of the texts in elementary and secondary school science textbooks at each grade level in terms of linguistic features. Data included some of the written texts related to 'Volcano and Earthquake' in Korean elementary and secondary school science textbooks in the seventh National Curriculum. The written texts were comparatively analyzed in terms of textual meaning, interpersonal meaning, and ideational meaning. Results revealed that there were different structures and linguistic features of the texts in school science textbooks depending on the grade level. Therefore, we argue that the differences in this study may make students feel difficult and strange when they read and understand science textbooks. We suggest that science teachers need to play the role of a mediator between students' understanding and the structural features of the scientific language in science learning.
AI speakers which are wireless speakers with smart features have released from many manufacturers and adopted by many customers. Though smart features including voice recognition, controlling connected devices and providing information are embedded in many mobile phones, AI speakers are sitting in home and has a role of the central en-tertainment and information provider. Many surveys have investigated the important factors to adopt AI speakers and influ-encing factors on satisfaction. Though most surveys on AI speakers are cross sectional, we can track customer attitude toward AI speakers longitudinally by analyzing customer reviews on AI speakers. However, there is not much research on the change of customer attitude toward AI speaker. Therefore, in this study, we try to grasp how the attitude of AI speaker changes with time by applying text mining-based analysis. We collected the customer reviews on Amazon Echo which has the highest share of AI speakers in the global market from Amazon.com. Since Amazon Echo already have two generations, we can analyze the characteristics of reviews and compare the attitude ac-cording to the adoption time. We identified all sub topics of customer reviews and specified the topics for smart features. And we analyzed how the share of topics varied with time and analyzed diverse meta data for comparisons. The proportions of the topics for general satisfaction and satisfaction on music were increasing while the proportions of the topics for music quality, speakers and wireless speakers were decreasing over time. Though the proportions of topics for smart fea-tures were similar according to time, the share of the topics in positive reviews and importance metrics were reduced in the 2nd generation of Amazon Echo. Even though smart features were mentioned similarly in the reviews, the influential effect on satisfac-tion were reduced over time and especially in the 2nd generation of Amazon Echo.
In this paper, we compared speaker verification performance of the speech data collected in clean environment and in channel environment. For the improvement of the performance of speaker verification gathered in channel, we have studied on the efficient feature parameters in channel environment and on the preprocessing. Speech DB for experiment is consisted of Korean doublet of numbers, considering the text-prompted system. Speech features including LPCC(Linear Predictive Cepstral Coefficient), MFCC(Mel Frequency Cepstral Coefficient), PLP(Perceptually Linear Prediction), LSP(Line Spectrum Pair) are analyzed. Also, the preprocessing of filtering to remove channel noise is studied. To remove or compensate for the channel effect from the extracted features, cepstral weighting, CMS(Cepstral Mean Subtraction), RASTA(RelAtive SpecTrAl) are applied. Also by presenting the speech recognition performance on each features and the processing, we compared speech recognition performance and speaker verification performance. For the evaluation of the applied speech features and processing methods, HTK(HMM Tool Kit) 2.0 is used. Giving different threshold according to male or female speaker, we compare EER(Equal Error Rate) on the clean speech data and channel data. Our simulation results show that, removing low band and high band channel noise by applying band pass filter(150~3800Hz) in preprocessing procedure, and extracting MFCC from the filtered speech, the best speaker verification performance was achieved from the view point of EER measurement.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.