• 제목/요약/키워드: Text features

Search Result 580, Processing Time 0.028 seconds

Research Trend on Diabetes Mobile Applications: Text Network Analysis and Topic Modeling (당뇨병 모바일 앱 관련 연구동향: 텍스트 네트워크 분석 및 토픽 모델링)

  • Park, Seungmi;Kwak, Eunju;Kim, Youngji
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.170-179
    • /
    • 2021
  • Purpose: The aim of this study was to identify core keywords and topic groups in the 'Diabetes mellitus and mobile applications' field of research for better understanding research trends in the past 20 years. Methods: This study was a text-mining and topic modeling study including four steps such as 'collecting abstracts', 'extracting and cleaning semantic morphemes', 'building a co-occurrence matrix', and 'analyzing network features and clustering topic groups'. Results: A total of 789 papers published between 2002 and 2021 were found in databases (Springer). Among them, 435 words were extracted from 118 articles selected according to the conditions: 'analyzed by text network analysis and topic modeling'. The core keywords were 'self-management', 'intervention', 'health', 'support', 'technique' and 'system'. Through the topic modeling analysis, four themes were derived: 'intervention', 'blood glucose level control', 'self-management' and 'mobile health'. The main topic of this study was 'self-management'. Conclusion: While more recent work has investigated mobile applications, the highest feature was related to self-management in the diabetes care and prevention. Nursing interventions utilizing mobile application are expected to not only effective and powerful glycemic control and self-management tools, but can be also used for patient-driven lifestyle modification.

Analysis of speech in game marketing video using text mining techniques (텍스트 마이닝 기법을 이용한 게임 마케팅 비디오에서의 스피치 분석)

  • Lee, Yeokyung;Kim, Jaejik
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.1
    • /
    • pp.147-159
    • /
    • 2022
  • Nowadays, various social media platforms are widely spread and people closely use such platforms in daily life. By doing so, social influencers with a large number of subscribers, views, and comments have huge impact in our society. Following this trend, many companies are actively using influencers for marketing purpose to promote their products and services. In this study, we extract the speeches of influencers from videos for game marketing and analyze them using various text mining techniques. In the analysis, we distinguish game videos leading to successful marketing and failed marketing, and we explore and compare the linguistic features of the influencers for successful and failed marketings.

Linguistic and Stylistic Markers of Influence in the Essayistic Text: A Linguophilosophic Aspect

  • Kolkutina, Viktoriia;Orekhova, Larysa;Gremaliuk, Tetiana;Borysenko, Natalia;Fedorova, Inna;Cheban, Oksana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.163-167
    • /
    • 2022
  • The article explores linguo-stylistic influence markers in essayistic texts. The novelty of this investigation is provided by its perspective. Essayism is looked at as a style of thinking and writing and studied as a holistic philosophical and cultural phenomenon, as a revalent form of comprehension of reality that features non-lasting author's judgements and enhancement of the author's voice in the text. Based on the texts by V. Rosanov, G.K. Chesterton, and D. Dontsov, the remarkable English, Russian, and Ukrainian essay-writers of the first party of the 20th century, the article tracks the typical ontological-and-existentialist correlation at the content, stylistic, and semantic levels. It is observed in terms of the ideas presented in the texts of these publicists and the lexicostylistic markers of the influence on the reader that enable these ideas to implement. The explored poetic syntax, key lexemes, dialogueness, intonational melodics, specific language, free associations, aphoristic nature, verbalization of emotions and feeling in the psycholinguistic form of their expression, stress, heroic elevation, metaphors and evaluative linguistic units in the ontological-and-existentialist aspects contribute to extremely delicate and demanding nature of the essayistic style. They create a "lacework" of unpredictable properties, intellectual illumination, unexpected similarity, metaphorical freshness, sudden discoveries, unmotivated unities.

A Study on the Syntagma & Paradigm by Repetition, Variation and Contrast in Ads

  • Choi, Seong-hoon
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.9
    • /
    • pp.1-12
    • /
    • 2017
  • This study is the academic work to explore the potential meanings of print advertisements. Linguistic features such as repetition, variation, contrast and phonological structure in the verbal texts of ads can give rise to shades-of-meaning or slight variations in advertising. The language of advertising is not only language in words. It is also a language in images, colors, and pictures. Pictures and words combine to form the advertisement's visual text.. While the words are very important in delivering the sales message, the visual text cannot be ignored in advertisements. Forming part of the visual text is the paralanguage of the ad. Paralanguage is the meaningful behaviour accompanying language, such as voice quality, gestures, facial expressions and touch in speech, and choice of typeface and letter sizes in writing. Foregrounding is the throwing into relief of the linguistic sign against the background of the norms of ordinary language. This paper focuses its discussion on the advertisements within the framework of the paradigmatic and the syntagmatic relationship. The sources of ads have been confined to Malboro. The ads were reselected based on purposive sampling methods.

Effective teaching using textbooks and AI web apps (교과서와 AI 웹앱을 활용한 효과적인 교육방식)

  • Sobirjon, Habibullaev;Yakhyo, Mamasoliev;Kim, Ki-Hawn
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.211-213
    • /
    • 2022
  • Images in the textbooks influence the learning process. Students often see pictures before reading the text and these pictures can enhance the power of imagination of the students. The findings of some researches show that the images in textbooks can increase students' creativity. However, when learning major subjects, reading a textbook or looking at a picture alone may not be enough to understand the topics and completely realize the concepts. Studies show that viewers remember 95% of a message when watching a video than reading a text. If we can combine textbooks and videos, this teaching method is fantastic. The "TEXT + IMAGE + VIDEO (Animation)" concept could be more beneficial than ordinary ones. We tried to give our solution by using machine learning Image Classification. This paper covers the features, approaches and detailed objectives of our project. For now, we have developed the prototype of this project as a web app and it only works when accessed via smartphone. Once you have accessed the web app through your smartphone, the web app asks for access to use the camera. Suppose you bring your smartphone's camera closer to the picture in the textbook. It will then display the video related to the photo below.

  • PDF

A Study on Recognition of Robot Barista Using Social Media Text Mining (소셜미디어 텍스트마이닝을 활용한 로봇 바리스타 인식 탐색 연구)

  • Han Jangheon;An Kabsoo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.2
    • /
    • pp.37-47
    • /
    • 2024
  • The food tech market, which uses artificial intelligence robots for the restaurant industry, is gradually expanding. Among them, the robot barista, a representative food tech case for the restaurant industry, is characterized by increasing the efficiency of operators and providing things for visitors to see and enjoy through a 24-hour unmanned operation. This research was conducted through text mining analysis to examine trends related to robot baristas in the restaurant industry. The research results are as follows. First, keywords such as coffee, cafe, certification, ordering, taste, interest, people, robot cafe, coffee barista expert, free, course, unmanned, and wine sommelier were highly frequent. Second, time, variety, possibility, people, process, operation, service, and thought showed high closeness centrality. Third, as a result of CONCOR analysis, a total of 5 keyword clusters with high relevance to the restaurant industry were formed. In order to activate robot barista in the future, it is necessary to pay more attention to functional development that can strengthen its functions and features, as well as online promotion through various events and SNS in the robot barista cafe.

Relation Extraction based on Extended Composite Kernel using Flat Lexical Features (평면적 어휘 자질들을 활용한 확장 혼합 커널 기반 관계 추출)

  • Chai, Sung-Pil;Jeong, Chang-Hoo;Chai, Yun-Soo;Myaeng, Sung-Hyon
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.8
    • /
    • pp.642-652
    • /
    • 2009
  • In order to improve the performance of the existing relation extraction approaches, we propose a method for combining two pivotal concepts which play an important role in classifying semantic relationships between entities in text. Having built a composite kernel-based relation extraction system, which incorporates both entity features and syntactic structured information of relation instances, we define nine classes of lexical features and synthetically apply them to the system. Evaluation on the ACE RDC corpus shows that our approach boosts the effectiveness of the existing composite kernels in relation extraction. It also confirms that by integrating the three important features (entity features, syntactic structures and contextual lexical features), we can improve the performance of a relation extraction process.

Generating Radiology Reports via Multi-feature Optimization Transformer

  • Rui Wang;Rong Hua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2768-2787
    • /
    • 2023
  • As an important research direction of the application of computer science in the medical field, the automatic generation technology of radiology report has attracted wide attention in the academic community. Because the proportion of normal regions in radiology images is much larger than that of abnormal regions, words describing diseases are often masked by other words, resulting in significant feature loss during the calculation process, which affects the quality of generated reports. In addition, the huge difference between visual features and semantic features causes traditional multi-modal fusion method to fail to generate long narrative structures consisting of multiple sentences, which are required for medical reports. To address these challenges, we propose a multi-feature optimization Transformer (MFOT) for generating radiology reports. In detail, a multi-dimensional mapping attention (MDMA) module is designed to encode the visual grid features from different dimensions to reduce the loss of primary features in the encoding process; a feature pre-fusion (FP) module is constructed to enhance the interaction ability between multi-modal features, so as to generate a reasonably structured radiology report; a detail enhanced attention (DEA) module is proposed to enhance the extraction and utilization of key features and reduce the loss of key features. In conclusion, we evaluate the performance of our proposed model against prevailing mainstream models by utilizing widely-recognized radiology report datasets, namely IU X-Ray and MIMIC-CXR. The experimental outcomes demonstrate that our model achieves SOTA performance on both datasets, compared with the base model, the average improvement of six key indicators is 19.9% and 18.0% respectively. These findings substantiate the efficacy of our model in the domain of automated radiology report generation.

Study on video character extraction and recognition (비디오 자막 추출 및 인식 기법에 관한 연구)

  • 김종렬;김성섭;문영식
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.141-144
    • /
    • 2001
  • In this paper, a new algorithm for extracting and recognizing characters from video, without pre-knowledge such as font, color, size of character, is proposed. To improve the recognition rate for videos with complex background at low resolution, continuous frames with identical text region are automatically detected to compose an average frame. Using boundary pixels of a text region as seeds, we apply region filling to remove background from the character Then color clustering is applied to remove remaining backgrounds according to the verification of region filling process. Features such as white run and zero-one transition from the center, are extracted from unknown characters. These feature are compared with a pre-composed character feature set to recognize the characters.

  • PDF

Automatic conversion of machining data by the recognition of press mold (프레스 금형의 특징형상 인식에 의한 가공데이터 자동변환)

  • 최홍태;반갑수;이석희
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1994.04a
    • /
    • pp.703-712
    • /
    • 1994
  • This paper presents an automatic conversion of machining data from the orthographic views of press mold by feature recognition rule. The system includes following 6 modules : separation of views, function support, dimension text recognition, feature recognition, dimension text check and feature processing modules. The characteristic of this system is that with minimum user intervention, it recognizes basic features such as holes, slots, pockets and clamping parts and thus automatically converts CAD drawing details of press mold into machining data using 2D CAD system instead of using an expensive 3D Modeler. The system is developed by using IBM-PC in the environment of AutoCAD R12, AutoLISP and MetaWare High C. Performance of the system is verified as a good interfacing of CAD and CAM when applied to a lot of sample drawings.