• Title/Summary/Keyword: Text features

Search Result 580, Processing Time 0.031 seconds

Development of KTRIMS Using the Technology of Full Text DB Construction (전문(全文) DB 구축(構築)에 의한 한국통신연구정보관리(韓國通信硏究情報管理) 시스템 개발(開發))

  • Lee, Sang-Yeob;Ahn, Hyun-Soo;Lee, Yang-Ok
    • Journal of Information Management
    • /
    • v.24 no.1
    • /
    • pp.1-20
    • /
    • 1993
  • KTRC(Korea Telecom Research Center) has developed the KTRIMS(Korea Telecom Research Information Management System) to keep and share the full text of the various up-to-date research information which many research institutes in KT have produced. This paper has presented the structure and the features of the KTRIMS.

  • PDF

Design and Implementation of Web Crawler with Real-Time Keyword Extraction based on the RAKE Algorithm

  • Zhang, Fei;Jang, Sunggyun;Joe, Inwhee
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.395-398
    • /
    • 2017
  • We propose a web crawler system with keyword extraction function in this paper. Researches on the keyword extraction in existing text mining are mostly based on databases which have already been grabbed by documents or corpora, but the purpose of this paper is to establish a real-time keyword extraction system which can extract the keywords of the corresponding text and store them into the database together while grasping the text of the web page. In this paper, we design and implement a crawler combining RAKE keyword extraction algorithm. It can extract keywords from the corresponding content while grasping the content of web page. As a result, the performance of the RAKE algorithm is improved by increasing the weight of the important features (such as the noun appearing in the title). The experimental results show that this method is superior to the existing method and it can extract keywords satisfactorily.

PubMiner: Machine Learning-based Text Mining for Biomedical Information Analysis

  • Eom, Jae-Hong;Zhang, Byoung-Tak
    • Genomics & Informatics
    • /
    • v.2 no.2
    • /
    • pp.99-106
    • /
    • 2004
  • In this paper we introduce PubMiner, an intelligent machine learning based text mining system for mining biological information from the literature. PubMiner employs natural language processing techniques and machine learning based data mining techniques for mining useful biological information such as protein­protein interaction from the massive literature. The system recognizes biological terms such as gene, protein, and enzymes and extracts their interactions described in the document through natural language processing. The extracted interactions are further analyzed with a set of features of each entity that were collected from the related public databases to infer more interactions from the original interactions. An inferred interaction from the interaction analysis and native interaction are provided to the user with the link of literature sources. The performance of entity and interaction extraction was tested with selected MEDLINE abstracts. The evaluation of inference proceeded using the protein interaction data of S. cerevisiae (bakers yeast) from MIPS and SGD.

A Study on Book Categorization in Social Sciences Using kNN Classifiers and Table of Contents Text (목차 정보와 kNN 분류기를 이용한 사회과학 분야 도서 자동 분류에 관한 연구)

  • Lee, Yong-Gu
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2020
  • This study applied automatic classification using table of contents (TOC) text for 6,253 social science books from a newly arrived list collected by a university library. The k-nearest neighbors (kNN) algorithm was used as a classifier, and the ten divisions on the second level of the DDC's main class 300 given to books by the library were used as classes (labels). The features used in this study were keywords extracted from titles and TOCs of the books. The TOCs were obtained through the OpenAPI from an Internet bookstore. As a result, it was found that the TOC features were good for improving both classification recall and precision. The TOC was shown to reduce the overfitting problem of imbalanced data with its rich features. Law and education have high topic specificity in the field of social sciences, so the only title features can bring good classification performance in these fields.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

A Review of the Opinion Target Extraction using Sequence Labeling Algorithms based on Features Combinations

  • Aziz, Noor Azeera Abdul;MohdAizainiMaarof, MohdAizainiMaarof;Zainal, Anazida;HazimAlkawaz, Mohammed
    • Journal of Internet Computing and Services
    • /
    • v.17 no.5
    • /
    • pp.111-119
    • /
    • 2016
  • In recent years, the opinion analysis is one of the key research fronts of any domain. Opinion target extraction is an essential process of opinion analysis. Target is usually referred to noun or noun phrase in an entity which is deliberated by the opinion holder. Extraction of opinion target facilitates the opinion analysis more precisely and in addition helps to identify the opinion polarity i.e. users can perceive opinion in detail of a target including all its features. One of the most commonly employed algorithms is a sequence labeling algorithm also called Conditional Random Fields. In present article, recent opinion target extraction approaches are reviewed based on sequence labeling algorithm and it features combinations by analyzing and comparing these approaches. The good selection of features combinations will in some way give a good or better accuracy result. Features combinations are an essential process that can be used to identify and remove unneeded, irrelevant and redundant attributes from data that do not contribute to the accuracy of a predictive model or may in fact decrease the accuracy of the model. Hence, in general this review eventually leads to the contribution for the opinion analysis approach and assist researcher for the opinion target extraction in particular.

A comparative study of filter methods based on information entropy

  • Kim, Jung-Tae;Kum, Ho-Yeun;Kim, Jae-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.437-446
    • /
    • 2016
  • Feature selection has become an essential technique to reduce the dimensionality of data sets. Many features are frequently irrelevant or redundant for the classification tasks. The purpose of feature selection is to select relevant features and remove irrelevant and redundant features. Applications of the feature selection range from text processing, face recognition, bioinformatics, speaker verification, and medical diagnosis to financial domains. In this study, we focus on filter methods based on information entropy : IG (Information Gain), FCBF (Fast Correlation Based Filter), and mRMR (minimum Redundancy Maximum Relevance). FCBF has the advantage of reducing computational burden by eliminating the redundant features that satisfy the condition of approximate Markov blanket. However, FCBF considers only the relevance between the feature and the class in order to select the best features, thus failing to take into consideration the interaction between features. In this paper, we propose an improved FCBF to overcome this shortcoming. We also perform a comparative study to evaluate the performance of the proposed method.

A Korean Sentence and Document Sentiment Classification System Using Sentiment Features (감정 자질을 이용한 한국어 문장 및 문서 감정 분류 시스템)

  • Hwang, Jaw-Won;Ko, Young-Joong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.3
    • /
    • pp.336-340
    • /
    • 2008
  • Sentiment classification is a recent subdiscipline of text classification, which is concerned not with the topic but with opinion. In this paper, we present a Korean sentence and document classification system using effective sentiment features. Korean sentiment classification starts from constructing effective sentiment feature sets for positive and negative. The synonym information of a English word thesaurus is used to extract effective sentiment features and then the extracted English sentiment features are translated in Korean features by English-Korean dictionary. A sentence or a document is represented by using the extracted sentiment features and is classified and evaluated by SVM(Support Vector Machine).

STEP Rally

  • 유상봉
    • Proceedings of the CALSEC Conference
    • /
    • 2000.08a
    • /
    • pp.151-163
    • /
    • 2000
  • ㆍ 참여 시스템 증가/STEP기능 홍보 ㆍ 일부 파일에서 error 발생 (특히, Surface) ㆍ 한글 지원 안됨 ㆍ 기술표준원, STEP 센터 등에서의 Authority를 갖는 테스트 필요 -국제 및 국내 인증 역할 병행 ㆍ 테스트 항목 상세화 필요 - color, 3D text annotation, drawing view, features - 변환 후 area, volume, centroid 등 확인

  • PDF