이미지에서 문자 추출은 영상을 이해하기 위한 가장 기초적이고 중요한 문제이다. 본 논문에서는 문자의 획 특징을 이용하는 통계적인 방법으로 문자 영역을 검증하는 방법을 제안한다. 제안하는 방법은 $16\times16$ 크기의 텍스트와 비텍스트 이미지를 웨이블릿(wavelet) 변환하여 문자의 획과 방향성을 표현하는 35차원의 특징을 추출한다. 추출된 특징 중 변별력이 높은 특징만을 선택하여 SVM(Support Vector Machine) 분류기를 구성한다. 분류기론 이용하여 $16\times16$크기의 윈도우로 검증 영역을 스캔하면서, 각각의 윈도우를 텍스트와 비텍스트로 분류하고 최종적으로 검증 영역의 텍스트 여부를 결정한다. 제안한 방법을 적용함으로써 텍스트와 유사하여 구별하기 어려운 비텍스트 영역을 검증할 수 있었다.
This article is an approach to improving the clustering of Web images by using high-level semantic features from text information relevant to Web images as well as low-level visual features of image itself. These high-level text features can be obtained from image URLs and file names, page titles, hyperlinks, and surrounding text. As a clustering algorithm, a self-organizing map (SOM) proposed by Kohonen is used. To evaluate the clustering efficiencies of SOMs, we propose a simple but effective measure indicating the accumulativeness of same class images and the perplexities of class distributions. Our approach is to advance the existing measures through defining and using new measures accumulativeness on the most superior clustering node and concentricity to evaluate clustering efficiencies of SOMs. The experimental results show that the high-level text features are more useful in SOM-based Web image clustering.
본 논문에서는 웹 이미지의 분류 효과를 높이기 위해 이미지 자체에서 추출된 저수준의 비주얼 특징뿐만 아니라 이미지와 관련된 텍스트 정보로부터 나온 고수준 시맨틱 특징들을 이용하는 분류 방법을 제안한다. 이 고수준의 텍스트 특징들은 이미지 URL, 파일명, 페이지 타이틀, 하이퍼링크 및 이미지 주변 텍스트로부터 얻어진다. 분류 엔진으로는 Kohonen의 SOM(Self Organizing Map)을 사용한다. 고수준의 텍스트 특징들과 저수준의 비주얼 특징들을 동시에 사용하는 SOM 기반의 이미지 분류에서는 10개의 카테고리로부터 수집된 200개의 테스트 이미지들이 사용되었다. 분류 성능을 평가하기 위해 간단하면서도 새로운 두 가지 척도, 즉 동일 카테고리 이미지들의 산포 정도와 집적 정도를 나타내는 각각의 척도를 정의하고 사용하였다. 실험결과, SOM기반의 웹 이미지 분류에서는 고수준의 텍스트 특징들이 보다 유용한 것임이 밝혀졌다.
Recently, electronic mail(E-mail) is the most popular communication manner in our society. In such conventional environments, spam increasingly congested in Internet. In this paper, Chinese spam could be effectively detected using text and image features. Using text features, keywords and reference templates in Chinese mails are automatically selected using genetic algorithm(GA). In addition, spam containing a promotion image is also filtered out by detecting the text characters in images. Some experimental results are given to show the effectiveness of our proposed method.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권3호
/
pp.941-953
/
2012
A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.
KSII Transactions on Internet and Information Systems (TIIS)
/
제6권4호
/
pp.1140-1152
/
2012
A novel and universal method of video image text detection is proposed. A coarse-to-fine text detection method is implemented. Firstly, the spectral clustering (SC) method is adopted to coarsely detect text regions based on the stationary wavelet transform (SWT). In order to make full use of the information, multi-parameters kernel function which combining the features similarity information and spatial adjacency information is employed in the SC method. Secondly, 28 dimension classifying features are proposed and support vector machine (SVM) is implemented to classify text regions with non-text regions. Experimental results on video images show the encouraging performance of the proposed algorithm and classifying features.
In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.
The text categorization is an important field for the automatic text information processing. Moreover, the authorship identification of a text can be treated as a special text categorization. This paper adopts the conceptual primitives' expression based on the Hierarchical Network of Concepts (HNC) theory, which can describe the words meaning in hierarchical symbols, in order to avoid the sparse data shortcoming that is aroused by the natural language surface features in text categorization. The KNN algorithm is used as computing classification element. Then, the experiment has been done on the Chinese text authorship identification. The experiment result gives out that the processing mode that is put forward in this paper achieves high correct rate, so it is feasible for the text authorship identification.
In this paper, we classified the objectionable texts into four rates according to their harmfulness and proposed the hierarchical text rating system for objectionable documents. Since the documents in the same category have similarities in used words, expressions and structure of the document, the text rating system, which uses a single classification model, has low accuracy. To solve this problem, we separate objectionable documents into several subsets by using their properties, and then classify the subsets hierarchically. The proposed system consists of three layers. In each layer, we select features using the chi-square statistics, and then the weight of the features, which is calculated by using the TF-IDF weighting scheme, is used as an input of the non-linear SVM classifier. By means of a hierarchical scheme using the different features and the different number of features in each layer, we can characterize the objectionability of documents more effectively and expect to improve the performance of the rating system. We compared the performance of the proposed system and performance of several text rating systems and experimental results show that the proposed system can archive an excellent classification performance.
사람이 어떤 문장을 보고 그 문장에 대해 이해하는 것은 문장 안에서 주요한 단어를 이미지로 연상시켜 그 문장에 대해 이해한다. 이러한 연상과정을 컴퓨터가 할 수 있도록 하는 것을 text-to-image라고 한다. 기존 딥 러닝 기반 text-to-image 모델은 Convolutional Neural Network(CNN)-Long Short Term Memory(LSTM), bi-directional LSTM을 사용하여 텍스트의 특징을 추출하고, GAN에 입력으로 하여 이미지를 생성한다. 기존 text-to-image 모델은 텍스트 특징 추출에서 기본적인 임베딩을 사용하였으며, 여러 모듈을 사용하여 이미지를 생성하므로 학습 시간이 오래 걸린다. 따라서 본 연구에서는 자연어 처리분야에서 성능 향상을 보인 어텐션 메커니즘(Attention Mechanism)을 문장 임베딩에 사용하여 특징을 추출하고, 추출된 특징을 GAN에 입력하여 이미지를 생성하는 방법을 제안한다. 실험 결과 기존 연구에서 사용되는 모델보다 inception score가 높았으며 육안으로 판단하였을 때 입력된 문장에서 특징을 잘 표현하는 이미지를 생성하였다. 또한, 긴 문장이 입력되었을 때에도 문장을 잘 표현하는 이미지를 생성하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.