Kyung Min Kim;Yongyoon Suh;Jong Bin Lee;Seong Rok Chang
Journal of the Korean Society of Safety
/
v.38
no.4
/
pp.23-31
/
2023
Revising the Occupational Safety and Health Act led to enacting and revising related laws and systems, such as placing fire observers in hot workplaces. However, the operating standards in such cases are still ambiguous. Although fire accidents occur through multiple and multi-step factors, the hazards of fire accidents have been identified in this study as individual rather than interrelated factors. The aim has been to identify multiple factors of accidents, outlining fire and explosion accidents that recently occurred in the domestic manufacturing industry. First, major keywords were extracted through text mining. Then representative accident types were derived by combining the main keywords through the co-word network analysis to identify the hazards and their relationships. The representative fire accidents were identified as six types, and their major hazards were then addressed for improving safety measures using the identification of hazards in the "Risk Assessment" tool. It is found that various safety measures, such as professional fire observers' training and clear placement standards, are needed. This study will provide useful basic data for revising practical laws and guidelines for fire accident prevention, system supplementation, safety policy establishment, and future related research.
Journal of Wellbeing Management and Applied Psychology
/
v.6
no.4
/
pp.27-31
/
2023
Purpose: This study analyzed papers identified by entering the two keywords 'unification education' and 'university' during research from 2013 to 2022 in order to identify trends and key concepts in unification education research at domestic universities. Research design, data, and methodology: The study analyzed 224 papers, excluding those on primary, middle, and high school unification education, as well as unrelated and duplicate papers. The analysis included developing a co-occurrence network of keywords, utilizing topic modeling to categorize research types, and confirming visualizations such as word clouds and sociograms. Results: In the final analysis, the research identified 1,500 keywords, with notable ones like 'Korea,' 'education,' 'unification.' Centrality analysis, measuring influence through connected keywords, revealed that 'Korea,' 'education,' 'north,' and 'unification' held significant positions. Keywords with high centrality compared to their frequency included 'learning,' 'development,' 'training,' 'peace,' and 'language,' in that order. Conclusions: This study investigated trends and structures in university-level unification education by analyzing papers identified with the keywords 'unification education' and 'university.' The use of keyword network analysis aimed to elucidate patterns and structures in university-level unification education. The significance of the study lies in offering foundational data for future research directions in the field of unification education at universities.
Nur Suhailayani Suhaimi;Zalinda Othman;Mohd Ridzwan Yaakub
International Journal of Computer Science & Network Security
/
v.23
no.11
/
pp.21-31
/
2023
In this paper, we focused on the problem of evaluating multi-class classification accuracy and simulation of multiple classifier performance metrics. Multi-class classifiers for sentiment analysis involved many challenges, whereas previous research narrowed to the binary classification model since it provides higher accuracy when dealing with text data. Thus, we take inspiration from the non-linear Support Vector Machine to modify the algorithm by embedding dynamic hyperplanes representing multiple class labels. Then we analyzed the performance of multi-class classifiers using macro-accuracy, micro-accuracy and several other metrics to justify the significance of our algorithm enhancement. Furthermore, we hybridized Enhanced Convolution Neural Network (ECNN) with Dynamic Support Vector Machine (DSVM) to demonstrate the effectiveness and efficiency of the classifier towards multi-class text data. We performed experiments on three hybrid classifiers, which are ECNN with Binary SVM (ECNN-BSVM), and ECNN with linear Multi-Class SVM (ECNN-MCSVM) and our proposed algorithm (ECNNDSVM). Comparative experiments of hybrid algorithms yielded 85.12 % for single metric accuracy; 86.95 % for multiple metrics on average. As for our modified algorithm of the ECNN-DSVM classifier, we reached 98.29 % micro-accuracy results with an f-score value of 98 % at most. For the future direction of this research, we are aiming for hyperplane optimization analysis.
Purpose: This study aimed to explore the perspectives of frontline nurses working during the novel coronavirus disease 2019 (COVID-19) pandemic. Methods: An online qualitative study was conducted using a pragmatic approach. The data were collected in August 2021. Registered Korean nurses who provided direct nursing care to patients with confirmed COVID-19 were eligible for this study. An online survey was used to gather free-text data, which were then analyzed using machine-based network analysis and summative content analysis. Results: The analysis examined the responses of 126 participants and led to the identification of six prominent themes. These themes were further classified into three distinct levels: personal, task, and organizational. The identified themes are as follows: "collapse of personal life," "being overwhelmed by the numerous roles required," "personal protective equipment was sufficiently provided, but that is not enough," "changes in interprofessional collaboration," "inappropriate workforce management," and "diverted allocation of healthcare services and resources." Conclusion: Our findings highlight areas for improvement in resources, systems, and policies to enhance preparedness for future pandemics.
KSCE Journal of Civil and Environmental Engineering Research
/
v.38
no.4
/
pp.595-599
/
2018
Sufficient understanding of oversea construction market status is crucial to get profitability in the international construction project. Plenty of researchers have been considering the news article as a fine data source for figuring out the market condition, since the data includes market information such as political, economic, and social issue. Since the text data exists in unstructured format with huge size, various text-mining techniques were studied to reduce the unnecessary manpower, time, and cost to summarize the data. However, there are some limitations to extract the needed information from the news article because of the existence of various topics in the data. This research is aimed to overcome the problems and contribute to summarization of market status by performing topic modeling with Latent Dirichlet Allocation. With assuming that 10 topics existed in the corpus, the topics included projects for user convenience (topic-2), private supports to solve poverty problems in Africa (topic-4), and so on. By grouping the topics in the news articles, the results could improve extracting useful information and summarizing the market status.
KIPS Transactions on Computer and Communication Systems
/
v.2
no.6
/
pp.279-290
/
2013
In digital forensics log files have been stored as a form of large data for the purpose of tracing users' past behaviors. It is difficult for investigators to manually analysis the large log data without clues. In this paper, we propose a text mining technique for extracting intrusion logs from a large log set to recommend reliable evidences to investigators. In the training stage, the proposed method extracts intrusion association words from a training log set by using Apriori algorithm after preprocessing and the probability of intrusion for association words are computed by combining support and confidence. Robinson's method of computing confidences for filtering spam mails is applied to extracting intrusion logs in the proposed method. As the results, the association word knowledge base is constructed by including the weights of the probability of intrusion for association words to improve the accuracy. In the test stage, the probability of intrusion logs and the probability of normal logs in a test log set are computed by Fisher's inverse chi-square classification algorithm based on the association word knowledge base respectively and intrusion logs are extracted from combining the results. Then, the intrusion logs are recommended to investigators. The proposed method uses a training method of clearly analyzing the meaning of data from an unstructured large log data. As the results, it complements the problem of reduction in accuracy caused by data ambiguity. In addition, the proposed method recommends intrusion logs by using Fisher's inverse chi-square classification algorithm. So, it reduces the rate of false positive(FP) and decreases in laborious effort to extract evidences manually.
In order to come up with satisfying product and improvement, firms use traditional marketing research methods to obtain consumers' opinions and further try to reflect them. Recently, gathering data from consumer communication platforms like internet and SNS has become popular methods. Meanwhile, with the development of information technology, mobile companies are launching new digital products for children to protect them from harmful content and provide them with necessary functions and information. Among these digital products, Kids Phone, which is a wearable device with safe functions that enable parents to learn childern's location. Kids phone is relatively cheaper and simpler than smartphone but it is noted that there are several problems such as some useless functions and frequent breakdowns. This study analyzes the reviews of Kids phones from domestic mobile companies, identifies the characteristics, strengths and weaknesses of the products, proposes improvement methods strategies for devices and services through SNS consumer analysis. In order to do that customer review data from online shopping malls was gathered and was further analyzed through text mining methods such as TF/IDF, Sentiment Analysis, and network analysis. Customer review data was gathered through crawling Online shopping Mall and Naver Blog/$Caf\acute{e}$. Data analysis and visualization was done using 'R', 'Textom', and 'Python'. Such analysis allowed us to figure out main issues and recent trends regarding kids phones and to suggest possible service improvement strategies based on sentiment analysis.
In this study, we predicted the bitcoin prices of Bithum and Coinbase, a leading exchange in Korea and USA, using ARIMA and Recurrent Neural Networks(RNNs). And we used news articles from each country to suggest a separated RNN model. The suggested model identifies the datasets based on the changing trend of prices in the training data, and then applies time series prediction technique(RNNs) to create multiple models. Then we used daily news data to create a term-based dictionary for each trend change point. We explored trend change points in the test data using the daily news keyword data of testset and term-based dictionary, and apply a matching model to produce prediction results. With this approach we obtained higher accuracy than the model which predicted price by applying just time series prediction technique. This study presents that the limitations of the time series prediction techniques could be overcome by exploring trend change points using news data and various time series prediction techniques with text mining techniques could be applied to improve the performance of the model in the further research.
This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.
Journal of the Korean Institute of Landscape Architecture
/
v.51
no.5
/
pp.44-56
/
2023
This research explores the enhancement of park operation and management by analyzing the changing demands of park users. While traditional methods depended on surveys, there has been a recent shift towards utilizing social media data to understand park usage trends. Notably, most research has focused on text data from social media, overlooking the valuable insights from image data. Addressing this gap, our study introduces a novel method of assessing park usage using social media image data and then applies it to actual city park evaluations. A unique image analysis tool, built on Visual Question Answering (VQA) deep learning technology, was developed. This tool revealed specific city park details such as user demographics, behaviors, and locations. Our findings highlight three main points: (1) The VQA-based image analysis tool's validity was proven by matching its results with traditional text analysis outcomes. (2) VQA deep learning technology offers insights like gender, age, and usage time, which aren't accessible from text analysis alone. (3) Using VQA, we derived operational and management strategies for city parks. In conclusion, our VQA-based method offers significant methodological advancements for future park usage studies.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.