• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.026 seconds

Food Preference and Nutrient Intake Status of High School Students in Rural Area of Korea (농촌 청소년의 식품 기호도와 영양 섭취 실태와의 관계)

  • Lee, Gun-Soon;Yoo, Young-Sang
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.7 no.2
    • /
    • pp.199-210
    • /
    • 1997
  • The purpose of this study was to investigate the mutual relationship between food preference and nutrient intake status of high school students, based on the their personal characters which are sex, age, family type, number of family, mother's age, occupation, and school career. 439 students were selected with random stratified cluster sampling method. The study used a self-administrated questionnaire and 24-hour recall method for 5 days as instrument tools. Statistical methods applied to analyze the data were frequency, percent, Willcoxon Rank-sum test, Kruskal-Wallis test, ${x^2}-test$ by contingence table, and Spearman's correlation coefficient in non parametric statistical methods. Some of interesting results are as follows : 1. The correlation between sex and the set of characters of mother's age, school career and income is highly significant. However there is no any significant difference on the kinds of job and the types of family. 2. The relation between the preference of main dishes and the nutrient intake show a significant difference except to the noodles. This marks that preference of main dishes shows a direct proportion with the nutrient intakes except for the fat, vitamin A, vitamin C. 3. The preference of animal food marks a direct proportion with the nutrients such as energy, protein, fat, fiber, phosphorus, iron, vitamin $B_{1}$, vitamin $B_{2}$, and niacin 4. The preference of vegetable food gives some influence on the nutrient intake but the preference of soup is insignificant, the preference of Kimchi is in reverse proportion, and the preference of vegetable marks a direct proportion with the nutrient intake. 5. The preference of snacks marks a direct proportion with all kinds of nutrients intake except for the vitamin A, and vitamin C.

  • PDF

An Analysis of Research Trends in Computational Thinking using Text Mining Technique (텍스트 마이닝 기법을 활용한 컴퓨팅 사고력 연구 동향 분석)

  • Lee, Jaeho;Jang, Junhyung
    • Journal of The Korean Association of Information Education
    • /
    • v.23 no.6
    • /
    • pp.543-550
    • /
    • 2019
  • In 2006, Janet Wing defined computational thinking and operated SW education as a formal curriculum in the UK in 2013. This study collected related research papers by using computational thinking, which has recently increased in importance, and analyzed it using text mining. In the first, CONCOR analysis was conducted with the keyword of computational thinking. In the second, text mining of the components of computational thinking was selected by the repr23esentative academic journals at domestic and foreign. As a result of the two-time analysis, first, abstraction, algorithm, data processing, problem decomposition, and pattern recognition were the core of the study of computational thinking component. Second, research on convergence education centered on computational thinking and science and mathematics subjects was actively conducted. Third, research on computational thinking has been expanding since 2010. Research and development of the classification and definition of computational thinking and components and applying them to education sites should be conducted steadily.

Implementation of TTS Engine for Natural Voice (자연음 TTS(Text-To-Speech) 엔진 구현)

  • Cho Jung-Ho;Kim Tae-Eun;Lim Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.4 no.2
    • /
    • pp.233-242
    • /
    • 2003
  • A TTS(Text-To-Speech) System is a computer-based system that should be able to read any text aloud. To output a natural voice, we need a general knowledge of language, a lot of time, and effort. Furthermore, the sound pattern of english has a variable pattern, which consists of phonemic and morphological analysis. It is very difficult to maintain consistency of pattern. To handle these problems, we present a system based on phonemic analysis for vowel and consonant. By analyzing phonological variations frequently found in spoken english, we have derived about phonemic contexts that would trigger the multilevel application of the corresponding phonological process, which consists of phonemic and allophonic rules. In conclusion, we have a rule data which consists of phoneme, and a engine which economize in system. The proposed system can use not only communication system, but also utilize office automation and so on.

  • PDF

KR-WordRank : An Unsupervised Korean Word Extraction Method Based on WordRank (KR-WordRank : WordRank를 개선한 비지도학습 기반 한국어 단어 추출 방법)

  • Kim, Hyun-Joong;Cho, Sungzoon;Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.1
    • /
    • pp.18-33
    • /
    • 2014
  • A Word is the smallest unit for text analysis, and the premise behind most text-mining algorithms is that the words in given documents can be perfectly recognized. However, the newly coined words, spelling and spacing errors, and domain adaptation problems make it difficult to recognize words correctly. To make matters worse, obtaining a sufficient amount of training data that can be used in any situation is not only unrealistic but also inefficient. Therefore, an automatical word extraction method which does not require a training process is desperately needed. WordRank, the most widely used unsupervised word extraction algorithm for Chinese and Japanese, shows a poor word extraction performance in Korean due to different language structures. In this paper, we first discuss why WordRank has a poor performance in Korean, and propose a customized WordRank algorithm for Korean, named KR-WordRank, by considering its linguistic characteristics and by improving the robustness to noise in text documents. Experiment results show that the performance of KR-WordRank is significantly better than that of the original WordRank in Korean. In addition, it is found that not only can our proposed algorithm extract proper words but also identify candidate keywords for an effective document summarization.

Beach-Lifeguard Considerations for Individuals with Disabilities: A Literature Review (장애인을 위한 해양 라이프가드 고려사항: 문헌연구)

  • Kim, Jaehwa;Kim, Hyemin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.245-253
    • /
    • 2019
  • Beach lifeguards in Korea are unprepared to perform the rescue and safety management for individuals with disabilities. There is no lifeguard training that offers information regarding the rescue of individuals with disabilities. The purpose of the study was to conduct literature review and determine significant issues related to beach lifeguard and provide suggestions for lifeguard training programs and water safety for individuals with disabilities. Databases (i.e., CINAHL Plus with Full Text, ERIC, MEDLINE, SPORTDiscus with Full Text) were used to search research articles and organizational documents. To find relevant documents, search terms such as water safety, lifeguard, drown prevention were used. Data were content analyzed to identify key issues. Based on the literature review, five critical issues regarding rescue of individuals with disabilities, drown prevention, and water safety were drawn and discussed in the article.

Comparative Analysis of Work-Life Balance Issues between Korea and the United States (워라밸 이슈 비교 분석: 한국과 미국)

  • Lee, So-Hyun;Kim, Minsu;Kim, Hee-Woong
    • The Journal of Information Systems
    • /
    • v.28 no.2
    • /
    • pp.153-179
    • /
    • 2019
  • Purpose This study collects the issues about work-life balance in Korea and United States and suggests the specific plans for work-life balance by the comparison and analysis. The objective of this study is to contribute to the improvement of people's life quality by understanding the concept of work-life balance that has become the issue recently and offering the detailed plans to be considered in respect of individual, corporate and governmental level for society of work-life balance. Design/methodology/approach This study collects work-life balance related issues through recruit sites in Korea and United States, compares and analyzes the collected data from the results of three text mining techniques such as LDA topic modeling, term frequency analysis and keyword extraction analysis. Findings According to the text mining results, this study shows that it is important to build corporate culture that support work-life balance in free organizational atmosphere especially in Korea. It also appears that there are the differences against whether work-life balance can be achieved and recognition and satisfaction about work-life balance along type of company or sort of working. In case of United States, it shows that it is important for them to work more efficiently by raising teamwork level among team members who work together as well as the role of the leaders who lead the teams in the organization. It is also significant for the company to provide their employees with the opportunity of education and training that enables them to improve their individual capability or skill. Furthermore, it suggests the roles of individuals, company and government and specific plans based on the analysis of text mining results in both countries.

The User Perception in ASMR Marketing Content through Social Media Text-Mining: ASMR Product Review Content vs ASMR How-to Content (텍스트 마이닝을 활용한 ASMR 콘텐츠 분야에 따른 소비자 인식 및 구전효과 차이점 분석: ASMR 제품리뷰 및 ASMR How-to 콘텐츠 중심으로)

  • Tran, Hung Chuong;Choi, Jae Won
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.1-20
    • /
    • 2021
  • Purpose Nowadays, Autonomous Sensory Meridian Response (ASMR) is rapidly growing in popularity and increasingly appearing in marketing. Not even in TV commercial advertisement, ASMR also fast growing in one-person media communication, many brands and social media influencers used ASMR for their marketing contents. The purpose of this study is to measure consumers' perceptions about the products in ASMR marketing content and compare the differences in communication effect of ASMR content creator between product review and how-to in the same Macro tier influencer - the YouTuber that has 10,000-100,000 subscribers. Design/methodology/approach The research methods selected ASMRtist that do product review content and how-to content, Text comments data was collected from 200 videos of tech-device review videos and beauty-fashion videos. A total of 52,833 text comments were analyzed by applying the LDA topic modeling algorithm and social network analysis. Findings Through the result, we can know that ASMR is good at taking attention of viewers with ASMR triggers. In the Tech device reviews field, ASMR viewers also focus on the product like product's performance and purchase. However, there are many topics related to reaction of ASMR sound, trigger, relaxation. In the Beauty-fashion field, viewers' topics mainly focus on the reaction of the ASMR trigger, response to ASMRtist and other topics are talking about makeup - fashion, product, purchase. From LDA result, many ASMR viewers comment that they feel more comfortable when watching the marketing content that uses ASMR. This result has shown that ASMR marketing contents have a good performance in terms of user watching experience, so applying ASMR can take more consumer intention. And the result of social network analysis showed that product review ASMRtist have a higher communication effectiveness than how-to ASMRtist in the same tier. As an influencer marketing strategy, this study provides information to establish an efficient advertising strategy by using influencers that create ASMR content.

The Research Trends and Keywords Modeling of Shoulder Rehabilitation using the Text-mining Technique (텍스트 마이닝 기법을 활용한 어깨 재활 연구분야 동향과 키워드 모델링)

  • Kim, Jun-hee;Jung, Sung-hoon;Hwang, Ui-jae
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.2
    • /
    • pp.91-100
    • /
    • 2021
  • PURPOSE: This study analyzed the trends and characteristics of shoulder rehabilitation research through keyword analysis, and their relationships were modeled using text mining techniques. METHODS: Abstract data of 10,121 articles in which abstracts were registered on the MEDLINE of PubMed with 'shoulder' and 'rehabilitation' as keywords were collected using python. By analyzing the frequency of words, 10 keywords were selected in the order of the highest frequency. Word-embedding was performed using the word2vec technique to analyze the similarity of words. In addition, the groups were classified and analyzed based on the distance (cosine similarity) through the t-SNE technique. RESULTS: The number of studies related to shoulder rehabilitation is increasing year after year, keywords most frequently used in relation to shoulder rehabilitation studies are 'patient', 'pain', and 'treatment'. The word2vec results showed that the words were highly correlated with 12 keywords from studies related to shoulder rehabilitation. Furthermore, through t-SNE, the keywords of the studies were divided into 5 groups. CONCLUSION: This study was the first study to model the keywords and their relationships that make up the abstracts of research in the MEDLINE of Pub Med related to 'shoulder' and 'rehabilitation' using text-mining techniques. The results of this study will help increase the diversifying research topics of shoulder rehabilitation studies to be conducted in the future.

Exploring the Core Keywords of the Secondary School Home Economics Teacher Selection Test: A Mixed Method of Content and Text Network Analyses (중등학교 가정과교사 임용시험의 핵심 키워드 탐색: 내용 분석과 텍스트 네트워크 분석을 중심으로)

  • Mi Jeong, Park;Ju, Han
    • Human Ecology Research
    • /
    • v.60 no.4
    • /
    • pp.625-643
    • /
    • 2022
  • The purpose of this study was to explore the trends and core keywords of the secondary school home economics teacher selection test using content analysis and text network analysis. The sample comprised texts of the secondary school home economics teacher 1st selection test for the 2017-2022 school years. Determination of frequency of occurrence, generation of word clouds, centrality analysis, and topic modeling were performed using NetMiner 4.4. The key results were as follows. First, content analysis revealed that the number of questions and scores for each subject (field) has remained constant since 2020, unlike before 2020. In terms of subjects, most questions focused on 'theory of home economics education', and among the evaluation content elements, the highest percentage of questions asked was for 'home economics teaching·learning methods and practice'. Second, the network of the secondary school home economics teacher selection test covering the 2017-2022 school years has an extremely weak density. For the 2017-2019 school years, 'learning', 'evaluation', 'instruction', and 'method' appeared as important keywords, and 7 topics were extracted. For the 2020-2022 school years, 'evaluation', 'class', 'learning', 'cycle', and 'model' were influential keywords, and five topics were extracted. This study is meaningful in that it attempted a new research method combining content analysis and text network analysis and prepared basic data for the revision of the evaluation area and evaluation content elements of the secondary school home economics teacher selection test.

A Typo Correction System Using Artificial Neural Networks for a Text-based Ornamental Fish Search Engine

  • Hyunhak Song;Sungyoon Cho;Wongi Jeon;Kyungwon Park;Jaedong Shim;Kiwon Kwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.2278-2291
    • /
    • 2023
  • Imported ornamental fish should be quarantined because they can have dangerous diseases depending on their habitat. The quarantine requires a lot of time because quarantine officers collect various information on the imported ornamental fish. Inefficient quarantine processes reduce its work efficiency and accuracy. Also, long-time quarantine causes the death of environmentally sensitive ornamental fish and huge financial losses. To improve existing quarantine systems, information on ornamental fish was collected and structured, and a server was established to develop quarantine performance support software equipped with a text search engine. However, the long names of ornamental fish in general can cause many typos and time bottlenecks when we type search words for the target fish information. Therefore, we need a technique that can correct typos. Typical typo character calibration compares input text with all characters in a calibrated candidate text dictionary. However, this approach requires computational power proportional to the number of typos, resulting in slow processing time and low calibration accuracy performance. Therefore, to improve the calibration accuracy of characters, we propose a fusion system of simple Artificial Neural Network (ANN) models and character preprocessing methods that accelerate the process by minimizing the computation of the models. We also propose a typo character generation method used for training the ANN models. Simulation results show that the proposed typo character correction system is about 6 times faster than the conventional method and has 10% higher accuracy.