The purpose of this study is to identify factors in selecting the elective ICT utilization lecture and to find positive and negative elements of the lecture through conducting topic modeling analysis of text mining of the narrative lecture evaluation. In order to do so, from pre-processing of data, keyword frequency analysis to wordcloud visualization and topic modeling analysis have been conducted from 'reasons of selecting the lecture,' 'improvements to be made on the lecture,' and 'what I liked about the lecture' categories regarding the ICT utilization lecture which was opened in the second semester of 2019 at M University. The analysis results show that students mostly registered for the ICT utilization lecture at M University to obtain a certificate and the fact being certified and taking the lecture can be done simultaneously is a positive element of taking the lecture. On the other hand, negative element included inconvenience of the classroom setting environment.
Purpose: The aim of this study was to identify core keywords and topic groups in the 'Diabetes mellitus and mobile applications' field of research for better understanding research trends in the past 20 years. Methods: This study was a text-mining and topic modeling study including four steps such as 'collecting abstracts', 'extracting and cleaning semantic morphemes', 'building a co-occurrence matrix', and 'analyzing network features and clustering topic groups'. Results: A total of 789 papers published between 2002 and 2021 were found in databases (Springer). Among them, 435 words were extracted from 118 articles selected according to the conditions: 'analyzed by text network analysis and topic modeling'. The core keywords were 'self-management', 'intervention', 'health', 'support', 'technique' and 'system'. Through the topic modeling analysis, four themes were derived: 'intervention', 'blood glucose level control', 'self-management' and 'mobile health'. The main topic of this study was 'self-management'. Conclusion: While more recent work has investigated mobile applications, the highest feature was related to self-management in the diabetes care and prevention. Nursing interventions utilizing mobile application are expected to not only effective and powerful glycemic control and self-management tools, but can be also used for patient-driven lifestyle modification.
Almurayziq, Tariq S;Alshammari, Gharbi Khamis;Alshammari, Abdullah;Alsaffar, Mohammad;Aljaloud, Saud
International Journal of Computer Science & Network Security
/
v.22
no.1
/
pp.61-68
/
2022
The present study was based on developing an AI based model to facilitate the academic registration needs of blind students. The model was developed to enable blind students to submit academic service requests and tasks with ease. The findings from previous studies formed the basis of the study where functionality gaps from the literary research identified by blind students were utilized when the system was devised. Primary simulation data were composed based on several thousand cases. As such, the current study develops a model based on archival insight. Given that the model is theoretical, it was partially applied to help determine how efficient the associated AI tools are and determine how effective they are in real-world settings by incorporating them into the portal that institutions currently use. In this paper, we argue that voice-activated personal assistant (VAPA), text mining, bag of words, and case-based reasoning (CBR) perform better together, compared with other classifiers for analyzing and classifying the text in academic request submission through the VAPA.
The Journal of the Convergence on Culture Technology
/
v.8
no.5
/
pp.729-734
/
2022
Various studies using accident cases are being conducted to identify the causes of accidents in the construction industry, but studies on the differences between public and private construction are insignificant. In this study, web scraping and text mining technologies were applied to analyze the causes of accidents by order type. Through statistical analysis and word cloud analysis of more than 10,000 structured and unstructured data collected, it was confirmed that there was a difference in the types and causes of accidents in public and private construction. In addition, it can contribute to the establishment of safety management measures in the future by identifying the correlation between major accident causes.
Purpose -International diplomacy is key for the cohesive economic growth of countries around the world. This study aims to identify the major topics discussed and make sense of word pairs used in sentences by Chinese senior leaders during their diplomatic visits. It also compares the differences between key topics addressed during diplomatic visits to developed and developing countries. Design/methodology - We employed three methods: word frequency, co-word, and semantic network analysis. Text data are crawling state and official visit news released by the Ministry of Foreign Affairs of the People's Republic of China regarding diplomatic visits undertaken from 2015-2019. Findings - The results show economic and diplomatic relations most prominently during state and official visits. The discussion topics were classified according to nine centrality keywords most central to the structure and had the maximum influence in China. Moreover, the results showed that China's diplomatic issues and strategies differ between developed and developing countries. The topics mentioned in developing countries were more diverse. Originality/value - Our study proposes an effective approach to identify key topics in Chinese diplomatic talks with other countries. Moreover, it shows that discussion topics differ for developed and developing countries. The findings of this research can help researchers conduct empirical studies on diplomacy relationships and extend our method to other countries. Additionally, it can significantly help key policymakers gain insights into negotiations and establish a good diplomatic relationship with China.
International Journal of Computer Science & Network Security
/
v.23
no.4
/
pp.48-54
/
2023
Nowadays, a blind man finds it very difficult to cross the roads. They should be very vigilant with every step they take. To resolve this problem, Convolutional Neural Networks(CNN) is a best method to analyse the data and automate the model without intervention of human being. In this work, a traffic signal recognition system is designed using CNN for the visually impaired. To provide a safe walking environment, a voice message is given according to light state and timer state at that instance. The developed model consists of two phases, in the first phase the CNN model is trained to classify different images captured from traffic signals. Common Objects in Context (COCO) labelled dataset is used, which includes images of different classes like traffic lights, bicycles, cars etc. The traffic light object will be detected using this labelled dataset with help of object detection model. The CNN model detects the color of the traffic light and timer displayed on the traffic image. In the second phase, from the detected color of the light and timer value a text message is generated and sent to the text-to-speech conversion model to make voice guidance for the blind person. The developed traffic light recognition model recognizes traffic light color and countdown timer displayed on the signal for safe signal crossing. The countdown timer displayed on the signal was not considered in existing models which is very useful. The proposed model has given accurate results in different scenarios when compared to other models.
This study examined the social discourse on consumer boycott and explored consumer experience using text mining of mass media and social media data and the in-depth interview. The result showed that the topics of online news related to the boycott included the causes of the boycott, the responses of each actor in the process of the boycott, and the effects of the boycott. In the result of the in-depth interviews, it was found that the boycott has been decentralized and the participants had the experience of exploring and verifying information on their own. In the boycott process, there were mixed experiences due to the absence of substitutes and the marketing influence, and positive experiences of expressing one's thoughts and strengthening beliefs through the boycott.
Thanh-Vu Dang;Gwang-hyun Yu;Ji-yong Kim;Young-hwan Park;Chil-woo Lee;Jin-Young Kim
Smart Media Journal
/
v.12
no.1
/
pp.32-46
/
2023
Natural Language Processing (NLP) has grown tremendously in recent years. Typically, bilingual, and multilingual translation models have been deployed widely in machine translation and gained vast attention from the research community. On the contrary, few studies have focused on translating between spoken and sign languages, especially non-English languages. Prior works on Sign Language Translation (SLT) have shown that a mid-level sign gloss representation enhances translation performance. Therefore, this study presents a new large-scale Korean sign language dataset, the Museum-Commentary Korean Sign Gloss (MCKSG) dataset, including 3828 pairs of Korean sentences and their corresponding sign glosses used in Museum-Commentary contexts. In addition, we propose a translation framework based on self-supervised learning, where the pretext task is a text-to-text from a Korean sentence to its back-translation versions, then the pre-trained network will be fine-tuned on the MCKSG dataset. Using self-supervised learning help to overcome the drawback of a shortage of sign language data. Through experimental results, our proposed model outperforms a baseline BERT model by 6.22%.
Proceedings of the Korean Society of Computer Information Conference
/
2023.01a
/
pp.437-438
/
2023
This paper takes the Pingjiang historical and cultural district of Suzhou city as an example, collects 1439 visitor review data from Ctrip.com with the help of Python technology, and uses web text analysis to conduct research on high-frequency words, semantic networks and emotional tendencies to comprehensively assess the tourist perception of the Grand Canal heritage. The study found that: natural and humanistic landscape, historical and cultural accumulation, and the style of Jiangnan Canal are fully reflected in the tourists' perception of Pingjiang historical and cultural district; tourists hold strong positive emotion towards Pingjiang Road, however, there is still more room for renovation and improvement of the historical and cultural district. Finally, countermeasure suggestions for improving the tourist perception of the Grand Canal heritage are given in terms of protection first, cultural integration and innovative utilization.
This study investigated the effect of learning achievements and cognitive load according to different types of presenting learning materials and epistemological beliefs (EB). Learning achievements in this study were composed by retention and transfer of ill-structured problem. A total of 80 college students participated in the study. Prior to the learning, students were guided to fill out a questionnaire regarding epistemological beliefs and a prior knowledge test. The students of each group studied with a different type of reading material: full text (FT), full text including key questions (KeyFT) and full text including a concept map (CmFT). After a session of study was finished, they were asked to complete the posttest: retention and transfer. The results showed that there was a significant difference in transfer achievements. CmFT outperformed higher scores than the other types. There was no significant difference in retention among the groups. It is strongly believed that the types of presenting learning materials may have affected the understanding of ill-structured problem solving skills. Students with sophisticated EB showed higher achievements on retention and transfer than naive-EB and mixed-EB. Even though the data showed decrease of the cognitive load on the type of materials and EB, there were no significant differences on the cognitive load. We should consider a positive effect of types of presenting learning materials and EB enhancing capabilities of solving ill-structured problems in real life.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.