• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.028 seconds

Analysis of Seasonal Importance of Construction Hazards Using Text Mining (텍스트마이닝을 이용한 건설공사 위험요소의 계절별 중요도 분석)

  • Park, Kichang;Kim, Hyoungkwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.3
    • /
    • pp.305-316
    • /
    • 2021
  • Construction accidents occur due to a number of reasons-worker carelessness, non-adoption of safety equipment, and failure to comply with safety rules are some examples. Because much construction work is done outdoors, weather conditions can also be a factor in accidents. Past construction accident data are useful for accident prevention, but since construction accident data are often in a text format consisting of natural language, extracting construction hazards from construction accident data can take a lot of time and that entails extra cost. Therefore, in this study, we extracted construction hazards from 2,026 domestic construction accident reports using text mining and performed a seasonal analysis of construction hazards through frequency analysis and centrality analysis. Of the 254 construction hazards defined by Korea's Ministry of Land, Infrastructure, and Transport, we extracted 51 risk factors from the construction accident data. The results showed that a significant hazard was "Formwork" in spring and autumn, "Scaffold" in summer, and "Crane" in winter. The proposed method would enable construction safety managers to prepare better safety measures against outdoor construction accidents according to weather, season, and climate.

A study on the method of deriving the cause of social issues based on causal sentences (인과관계문형 기반 사회이슈 발생원인 도출 방법 연구)

  • Lee, Namyeon;Lee, Jae Hyung
    • Journal of Digital Convergence
    • /
    • v.19 no.3
    • /
    • pp.167-176
    • /
    • 2021
  • With development of big data analysis technology, many studies to find social issues using texts mining techniques have been conducted. In order to derive social issues, previous studies performed in a way that collects a large amount of text data from news or SNS, and then analyzes issues based on text mining techniques such as topic modeling and terms network analysis. Social issues are the results of various social phenomena and factors. However, since previous studies focused on deriving social issues that are results of various causes, there are limitations to revealing the cause of the issues. In order to effectively respond to social issues, it is necessary not only to derive social issues, but also to be able to identify the causes of social issues. In this study, in order to overcome these limitations, we proposed a method of deriving the factors that cause social issues from texts related to social issues based on the theory of part of Korean linguistics. To do this, we collected news data related to social issues for three years from 2017 to 2019 and proposed a methodology to find causes based causal sentences based on text mining techniques.

Research Trends in Record Management Using Unstructured Text Data Analysis (비정형 텍스트 데이터 분석을 활용한 기록관리 분야 연구동향)

  • Deokyong Hong;Junseok Heo
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.73-89
    • /
    • 2023
  • This study aims to analyze the frequency of keywords used in Korean abstracts, which are unstructured text data in the domestic record management research field, using text mining techniques to identify domestic record management research trends through distance analysis between keywords. To this end, 1,157 keywords of 77,578 journals were visualized by extracting 1,157 articles from 7 journal types (28 types) searched by major category (complex study) and middle category (literature informatics) from the institutional statistics (registered site, candidate site) of the Korean Citation Index (KCI). Analysis of t-Distributed Stochastic Neighbor Embedding (t-SNE) and Scattertext using Word2vec was performed. As a result of the analysis, first, it was confirmed that keywords such as "record management" (889 times), "analysis" (888 times), "archive" (742 times), "record" (562 times), and "utilization" (449 times) were treated as significant topics by researchers. Second, Word2vec analysis generated vector representations between keywords, and similarity distances were investigated and visualized using t-SNE and Scattertext. In the visualization results, the research area for record management was divided into two groups, with keywords such as "archiving," "national record management," "standardization," "official documents," and "record management systems" occurring frequently in the first group (past). On the other hand, keywords such as "community," "data," "record information service," "online," and "digital archives" in the second group (current) were garnering substantial focus.

Analysis of User Reviews of Running Applications Using Text Mining: Focusing on Nike Run Club and Runkeeper (텍스트마이닝을 활용한 러닝 어플리케이션 사용자 리뷰 분석: Nike Run Club과 Runkeeper를 중심으로)

  • Gimun Ryu;Ilgwang Kim
    • Journal of Industrial Convergence
    • /
    • v.22 no.4
    • /
    • pp.11-19
    • /
    • 2024
  • The purpose of this study was to analyze user reviews of running applications using text mining. This study used user reviews of Nike Run Club and Runkeeper in the Google Play Store using the selenium package of python3 as the analysis data, and separated the morphemes by leaving only Korean nouns through the OKT analyzer. After morpheme separation, we created a rankNL dictionary to remove stopwords. To analyze the data, we used TF, TF-IDF and LDA topic modeling in text mining. The results of this study are as follows. First, the keywords 'record', 'app', and 'workout' were identified as the top keywords in the user reviews of Nike Run Club and Runkeeper applications, and there were differences in the rankings of TF and TF-IDF. Second, the LDA topic modeling of Nike Run Club identified the topics of 'basic items', 'additional features', 'errors', and 'location-based data', and the topics of Runkeeper identified the topics of 'errors', 'voice function', 'running data', 'benefits', and 'motivation'. Based on the results, it is recommended that errors and improvements should be made to contribute to the competitiveness of the application.

Location Inference of Twitter Users using Timeline Data (타임라인데이터를 이용한 트위터 사용자의 거주 지역 유추방법)

  • Kang, Ae Tti;Kang, Young Ok
    • Spatial Information Research
    • /
    • v.23 no.2
    • /
    • pp.69-81
    • /
    • 2015
  • If one can infer the residential area of SNS users by analyzing the SNS big data, it can be an alternative by replacing the spatial big data researches which result from the location sparsity and ecological error. In this study, we developed the way of utilizing the daily life activity pattern, which can be found from timeline data of tweet users, to infer the residential areas of tweet users. We recognized the daily life activity pattern of tweet users from user's movement pattern and the regional cognition words that users text in tweet. The models based on user's movement and text are named as the daily movement pattern model and the daily activity field model, respectively. And then we selected the variables which are going to be utilized in each model. We defined the dependent variables as 0, if the residential areas that users tweet mainly are their home location(HL) and as 1, vice versa. According to our results, performed by the discriminant analysis, the hit ratio of the two models was 67.5%, 57.5% respectively. We tested both models by using the timeline data of the stress-related tweets. As a result, we inferred the residential areas of 5,301 users out of 48,235 users and could obtain 9,606 stress-related tweets with residential area. The results shows about 44 times increase by comparing to the geo-tagged tweets counts. We think that the methodology we have used in this study can be used not only to secure more location data in the study of SNS big data, but also to link the SNS big data with regional statistics in order to analyze the regional phenomenon.

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.

Analysis of the Landscape Characteristics of Island Tourist Site Using Big Data - Based on Bakji and Banwol-do, Shinan-gun - (빅데이터를 활용한 섬 관광지의 경관 특성 분석 - 신안군 박지·반월도를 대상으로 -)

  • Do, Jee-Yoon;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.61-73
    • /
    • 2021
  • This study aimed to identify the landscape perception and landscape characteristics of users by utilizing SNS data generated by their experiences. Therefore, how to recognize the main places and scenery appearing on the island, and what are the characteristics of the main scenery were analyzed using online text data and photo data. Text data are text mining and network structural analysis, while photographic data are landscape identification models and color analysis. As a result of the study, First, as a result of frequency analysis of Bakji·Banwol-do topics, we were able to derive keywords for local landscapes such as 'Purple Bridge', 'Doori Village', and location, behavior, and landscape images by analyzing them simultaneously. Second, the network structure analysis showed that the connection between key and undrawn keywords could be more specifically analyzed, indicating that creating landscapes using colors is affecting regional activation. Third, after analyzing the landscape identification model, it was found that artificial elements would be excluded to create preferred landscapes using the main targets of "Purple Bridge" and "Doori Village", and that it would be effective to set a view point of the sea and sky. Fourth, Bakji·Banwol-do were the first islands to be created under the theme of color, and the colors used in artificial facilities were similar to the surrounding environment, and were harmonized with contrasting lighting and saturation values. This study used online data uploaded directly by visitors in the landscape field to identify users' perceptions and objects of the landscape. Furthermore, the use of both text and photographic data to identify landscape recognition and characteristics is significant in that they can specifically identify which landscape and resources they prefer and perceive. In addition, the use of quantitative big data analysis and qualitative landscape identification models in identifying visitors' perceptions of local landscapes will help them understand the landscape more specifically through discussions based on results.

A study on the efficient extraction method of SNS data related to crime risk factor (범죄발생 위험요소와 연관된 SNS 데이터의 효율적 추출 방법에 관한 연구)

  • Lee, Jong-Hoon;Song, Ki-Sung;Kang, Jin-A;Hwang, Jung-Rae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.1
    • /
    • pp.255-263
    • /
    • 2015
  • In this paper, we suggest a plan to take advantage of the SNS data to proactively identify the information on crime risk factor and to prevent crime. Recently, SNS(Social Network Service) data have been used to build a proactive prevention system in a variety of fields. However, when users are collecting SNS data with simple keyword, the result is contain a large amount of unrelated data. It may possibly accuracy decreases and lead to confusion in the data analysis. So we present a method that can be efficiently extracted by improving the search accuracy through text mining analysis of SNS data.

Design of a Sentiment Analysis System to Prevent School Violence and Student's Suicide (학교폭력과 자살사고를 예방하기 위한 감성분석 시스템의 설계)

  • Kim, YoungTaek
    • The Journal of Korean Association of Computer Education
    • /
    • v.17 no.6
    • /
    • pp.115-122
    • /
    • 2014
  • One of the problems with current youth generations is increasing rate of violence and suicide in their school lives, and this study aims at the design of a sentiment analysis system to prevent suicide by uising big data process. The main issues of the design are economical implementation, easy and fast processing for the users, so, the open source Hadoop system with MapReduce algorithm is used on the HDFS(Hadoop Distributed File System) for the experimentation. This study uses word count method to do the sentiment analysis with informal data on some sns communications concerning a kinds of violent words, in terms of text mining to avoid some expensive and complex statistical analysis methods.

  • PDF

Trend Analysis of the Agricultural Industry Based on Text Analytics

  • Choi, Solsaem;Kim, Junhwan;Nam, Seungju
    • Agribusiness and Information Management
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This research intends to propose the methodology for analyzing the current trends of agriculture, which directly connects to the survival of the nation, and through this methodology, identify the agricultural trend of Korea. Based on the relationship between three types of data - policy reports, academic articles, and news articles - the research deducts the major issues stored by each data through LDA, the representative topic modeling method. By comparing and analyzing the LDA results deducted from each data source, this study intends to identify the implications regarding the current agricultural trends of Korea. This methodology can be utilized in analyzing industrial trends other than agricultural ones. To go on further, it can also be used as a basic resource for contemplation on potential areas in the future through insight on the current situation. database of the profitability of a total of 180 crop types by analyzing Rural Development Administration's survey of agricultural products income of 115 crop types, small land profitability index survey of 53 crop types, and Statistics Korea's survey of production costs of 12 crop types. Furthermore, this research presents the result and developmental process of a web-based crop introduction decision support system that provides overseas cases of new crop introduction support programs, as well as databases of outstanding business success cases of each crop type researched by agricultural institutions.