• Title/Summary/Keyword: Text data

Search Result 2,953, Processing Time 0.037 seconds

A Study on the Integration Between Smart Mobility Technology and Information Communication Technology (ICT) Using Patent Analysis

  • Alkaabi, Khaled Sulaiman Khalfan Sulaiman;Yu, Jiwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.6
    • /
    • pp.89-97
    • /
    • 2019
  • This study proposes a method for investigating current patents related to information communication technology and smart mobility to provide insights into future technology trends. The method is based on text mining clustering analysis. The method consists of two stages, which are data preparation and clustering analysis, respectively. In the first stage, tokenizing, filtering, stemming, and feature selection are implemented to transform the data into a usable format (structured data) and to extract useful information for the next stage. In the second stage, the structured data is partitioned into groups. The K-medoids algorithm is selected over the K-means algorithm for this analysis owing to its advantages in dealing with noise and outliers. The results of the analysis indicate that most current patents focus mainly on smart connectivity and smart guide systems, which play a major role in the development of smart mobility.

The measurement temperature and analysis used embedded system by internet explorer (인터넷 익스플로러를 통한 임베디드 시스템 기반의 온도 측정 및 분석)

  • 김희식;김영일;설대연;남철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1003-1006
    • /
    • 2004
  • In this paper have developed a system for monitoring and processing the real time sensor data in remote site through network. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is connected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server programworking on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be apply for many parts of industry and living.

  • PDF

Analysis of Smart Factory Research Trends Based on Big Data Analysis (빅데이터 분석을 활용한 스마트팩토리 연구 동향 분석)

  • Lee, Eun-Ji;Cho, Chul-Ho
    • Journal of Korean Society for Quality Management
    • /
    • v.49 no.4
    • /
    • pp.551-567
    • /
    • 2021
  • Purpose: The purpose of this paper is to present implications by analyzing research trends on smart factories by text analysis and visual analysis(Comprehensive/ Fields / Years-based) which are big data analyses, by collecting data based on previous studies on smart factories. Methods: For the collection of analysis data, deep learning was used in the integrated search on the Academic Research Information Service (www.riss.kr) to search for "SMART FACTORY" and "Smart Factory" as search terms, and the titles and Korean abstracts were scrapped out of the extracted paper and they are organize into EXCEL. For the final step, 739 papers derived were analyzed using the Rx64 4.0.2 program and Rstudio using text mining, one of the big data analysis techniques, and Word Cloud for visualization. Results: The results of this study are as follows; Smart factory research slowed down from 2005 to 2014, but until 2019, research increased rapidly. According to the analysis by fields, smart factories were studied in the order of engineering, social science, and complex science. There were many 'engineering' fields in the early stages of smart factories, and research was expanded to 'social science'. In particular, since 2015, it has been studied in various disciplines such as 'complex studies'. Overall, in keyword analysis, the keywords such as 'technology', 'data', and 'analysis' are most likely to appear, and it was analyzed that there were some differences by fields and years. Conclusion: Government support and expert support for smart factories should be activated, and researches on technology-based strategies are needed. In the future, it is necessary to take various approaches to smart factories. If researches are conducted in consideration of the environment or energy, it is judged that bigger implications can be presented.

A Study of Consumer Perception on Fashion Show Using Big Data Analysis (빅데이터를 활용한 패션쇼에 대한 소비자 인식 연구)

  • Kim, Da Jeong;Lee, Seunghee
    • Journal of Fashion Business
    • /
    • v.23 no.3
    • /
    • pp.85-100
    • /
    • 2019
  • This study examines changes in consumer perceptions of fashion shows, which are critical elements in the apparel industry and a means to represent a brand's image and originality. For this purpose, big data in clothing marketing, text mining, semantic network analysis techniques were applied. This study aims to verify the effectiveness and significance of fashion shows in an effort to give directions for their future utilization. The study was conducted in two major stages. First, data collection with the key word, "fashion shows," was conducted across websites, including Naver and Daum between 2015 and 2018. The data collection period was divided into the first- and second-half periods. Next, Textom 3.0 was utilized for data refinement, text mining, and word clouding. The Ucinet 6.0 and NetDraw, were used for semantic network analysis, degree centrality, CONCOR analysis and also visualization. The level of interest in "models" was found to be the highest among the perception factors related to fashion shows in both periods. In the first-half period, the consumer interests focused on detailed visual stimulants such as model and clothing while in the second-half period, perceptions changed as the value of designers and brands were increasingly recognized over time. The findings of this study can be utilized as a tool to evaluate fashion shows, the apparel industry sectors, and the marketing methods. Additionally, it can also be used as a theoretical framework for big data analysis and as a basis of strategies and research in industrial developments.

Creation and clustering of proximity data for text data analysis (텍스트 데이터 분석을 위한 근접성 데이터의 생성과 군집화)

  • Jung, Min-Ji;Shin, Sang Min;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.3
    • /
    • pp.451-462
    • /
    • 2019
  • Document-term frequency matrix is a type of data used in text mining. This matrix is often based on various documents provided by the objects to be analyzed. When analyzing objects using this matrix, researchers generally select only terms that are common in documents belonging to one object as keywords. Keywords are used to analyze the object. However, this method misses the unique information of the individual document as well as causes a problem of removing potential keywords that occur frequently in a specific document. In this study, we define data that can overcome this problem as proximity data. We introduce twelve methods that generate proximity data and cluster the objects through two clustering methods of multidimensional scaling and k-means cluster analysis. Finally, we choose the best method to be optimized for clustering the object.

A Study on the Analysis of Marine Accidents on Fishing Ships Using Accident Cause Data (사고 데이터의 주요 원인을 이용한 어선 해양사고 분석에 관한 연구)

  • Sang-A Park;Deuk-Jin Park
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • Many studies have analyzed marine accidents, and since marine accident information is updated every year, it is necessary to periodically analyze and identify the causes. The purpose of this study was to prevent accidents by identifying and analyzing the causes of marine accidents using previous and new data. In marine accident data, 1,921 decisions by the Korea Maritime Safety Tribunal on marine accidents on fishing ships over 16 years were collected in consideration of the specificity of fishing ships, and 1,917 cases of accident notification text history by the Ministry of Maritime Affairs and Fisheries over 3 years were collected. The decision data and text data were classified according to variables and quantified. Prior probability was calculated using a Bayesian network using the quantified data, and fishing ship marine accidents were predicted using backward propagation. Among the two collected datasets, the decision data did not provide the types of fishing ships and fishing areas, and because not all fishing ship accidents were included in the decision data, the text data were selected. The probability of a fishing ship marine accident in which engine damage would occur in the West Sea was 0.0000031%, as calculated by backward propagation. The expected effect of this study is that it is possible to analyze marine accidents suitable for the characteristics of actual fishing ships using new accident notification text data to analyze fishing ship marine accidents. In the future, we plan to conduct research on the causal relationship between variables that affect fishing ship marine accidents.

Development of SVM-based Construction Project Document Classification Model to Derive Construction Risk (건설 리스크 도출을 위한 SVM 기반의 건설프로젝트 문서 분류 모델 개발)

  • Kang, Donguk;Cho, Mingeon;Cha, Gichun;Park, Seunghee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.841-849
    • /
    • 2023
  • Construction projects have risks due to various factors such as construction delays and construction accidents. Based on these construction risks, the method of calculating the construction period of the construction project is mainly made by subjective judgment that relies on supervisor experience. In addition, unreasonable shortening construction to meet construction project schedules delayed by construction delays and construction disasters causes negative consequences such as poor construction, and economic losses are caused by the absence of infrastructure due to delayed schedules. Data-based scientific approaches and statistical analysis are needed to solve the risks of such construction projects. Data collected in actual construction projects is stored in unstructured text, so to apply data-based risks, data pre-processing involves a lot of manpower and cost, so basic data through a data classification model using text mining is required. Therefore, in this study, a document-based data generation classification model for risk management was developed through a data classification model based on SVM (Support Vector Machine) by collecting construction project documents and utilizing text mining. Through quantitative analysis through future research results, it is expected that risk management will be possible by being used as efficient and objective basic data for construction project process management.

Efficient Topic Modeling by Mapping Global and Local Topics (전역 토픽의 지역 매핑을 통한 효율적 토픽 모델링 방안)

  • Choi, Hochang;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.69-94
    • /
    • 2017
  • Recently, increase of demand for big data analysis has been driving the vigorous development of related technologies and tools. In addition, development of IT and increased penetration rate of smart devices are producing a large amount of data. According to this phenomenon, data analysis technology is rapidly becoming popular. Also, attempts to acquire insights through data analysis have been continuously increasing. It means that the big data analysis will be more important in various industries for the foreseeable future. Big data analysis is generally performed by a small number of experts and delivered to each demander of analysis. However, increase of interest about big data analysis arouses activation of computer programming education and development of many programs for data analysis. Accordingly, the entry barriers of big data analysis are gradually lowering and data analysis technology being spread out. As the result, big data analysis is expected to be performed by demanders of analysis themselves. Along with this, interest about various unstructured data is continually increasing. Especially, a lot of attention is focused on using text data. Emergence of new platforms and techniques using the web bring about mass production of text data and active attempt to analyze text data. Furthermore, result of text analysis has been utilized in various fields. Text mining is a concept that embraces various theories and techniques for text analysis. Many text mining techniques are utilized in this field for various research purposes, topic modeling is one of the most widely used and studied. Topic modeling is a technique that extracts the major issues from a lot of documents, identifies the documents that correspond to each issue and provides identified documents as a cluster. It is evaluated as a very useful technique in that reflect the semantic elements of the document. Traditional topic modeling is based on the distribution of key terms across the entire document. Thus, it is essential to analyze the entire document at once to identify topic of each document. This condition causes a long time in analysis process when topic modeling is applied to a lot of documents. In addition, it has a scalability problem that is an exponential increase in the processing time with the increase of analysis objects. This problem is particularly noticeable when the documents are distributed across multiple systems or regions. To overcome these problems, divide and conquer approach can be applied to topic modeling. It means dividing a large number of documents into sub-units and deriving topics through repetition of topic modeling to each unit. This method can be used for topic modeling on a large number of documents with limited system resources, and can improve processing speed of topic modeling. It also can significantly reduce analysis time and cost through ability to analyze documents in each location or place without combining analysis object documents. However, despite many advantages, this method has two major problems. First, the relationship between local topics derived from each unit and global topics derived from entire document is unclear. It means that in each document, local topics can be identified, but global topics cannot be identified. Second, a method for measuring the accuracy of the proposed methodology should be established. That is to say, assuming that global topic is ideal answer, the difference in a local topic on a global topic needs to be measured. By those difficulties, the study in this method is not performed sufficiently, compare with other studies dealing with topic modeling. In this paper, we propose a topic modeling approach to solve the above two problems. First of all, we divide the entire document cluster(Global set) into sub-clusters(Local set), and generate the reduced entire document cluster(RGS, Reduced global set) that consist of delegated documents extracted from each local set. We try to solve the first problem by mapping RGS topics and local topics. Along with this, we verify the accuracy of the proposed methodology by detecting documents, whether to be discerned as the same topic at result of global and local set. Using 24,000 news articles, we conduct experiments to evaluate practical applicability of the proposed methodology. In addition, through additional experiment, we confirmed that the proposed methodology can provide similar results to the entire topic modeling. We also proposed a reasonable method for comparing the result of both methods.

Big Data Analysis of the Women Who Score Goal Sports Entertainment Program: Focusing on Text Mining and Semantic Network Analysis.

  • Hyun-Myung, Kim;Kyung-Won, Byun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.222-230
    • /
    • 2023
  • The purpose of this study is to provide basic data on sports entertainment programs by collecting data on unstructured data generated by Naver and Google for SBS entertainment program 'Women Who Score Goal', which began regular broadcast in June 2021, and analyzing public perceptions through data mining, semantic matrix, and CONCOR analysis. Data collection was conducted using Textom, and 27,911 cases of data accumulated for 16 months from June 16, 2021 to October 15, 2022. For the collected data, 80 key keywords related to 'Kick a Goal' were derived through simple frequency and TF-IDF analysis through data mining. Semantic network analysis was conducted to analyze the relationship between the top 80 keywords analyzed through this process. The centrality was derived through the UCINET 6.0 program using NetDraw of UCINET 6.0, understanding the characteristics of the network, and visualizing the connection relationship between keywords to express it clearly. CONCOR analysis was conducted to derive a cluster of words with similar characteristics based on the semantic network. As a result of the analysis, it was analyzed as a 'program' cluster related to the broadcast content of 'Kick a Goal' and a 'Soccer' cluster, a sports event of 'Kick a Goal'. In addition to the scenes about the game of the cast, it was analyzed as an 'Everyday Life' cluster about training and daily life, and a cluster about 'Broadcast Manipulation' that disappointed viewers with manipulation of the game content.

Keyword Analysis of Two SCI Journals on Rock Engineering by using Text Mining (텍스트 마이닝을 이용한 암반공학분야 SCI논문의 주제어 분석)

  • Jung, Yong-Bok;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • Text mining is one of the branches of data mining and is used to find any meaningful information from the large amount of text. In this study, we analyzed titles and keywords of two SCI journals on rock engineering by using text mining to find major research area, trend and associations of research fields. Visualization of the results was also included for the intuitive understanding of the results. Two journals showed similar research fields but different patterns in the associations among research fields. IJRMMS showed simple network, that is one big group based on the keyword 'rock' with a few small groups. On the other hand, RMRE showed a complex network among various medium groups. Trend analysis by clustering and linear regression of keyword - year frequency matrix provided that most of the keywords increased in number as time goes by except a few descending keywords.